Intelligent Management using Collaborative Reinforcement Multiagent System

M. Kim, Y. Hong (ETRI) Y. Han (Koreatech.)

NMRG Meeting@IETF 99 – Prague 2017.07.20

draft-kim-nmrg-rl-00

(https://datatracker.ietf.org/doc/draft-kim-nmrg-rl/?include_text=1)

Table of Contents	
1. Introduction	
 Proposed Architecture for Reinforcement Learning 6 Use case of Multi-agent Reinforcement Learning 8 Distributed Multi-agent Reinforcement Learning: Sharing 	
Information Technique	
Kim, et al. Expires January 4, 2018 [Page 2] Internet-Draft Network RL July 2017	

Reinforcement Learning

- **◆** One of the machine learning algorithm
- An agent can explore an environment with taking action and its current state toward destination
- **♦** The cumulative reward to find an optimal value by agents
- The policy from maximizing cumulative reward for learning process

What is Motivation?

- **♦** General Motivation for Reinforcement Learning (RL)
 - ✓ Reinforcement Learning (RL) is a system capable of autonomous acquirement and incorporation of knowledge
- **♦** Reinforcement Learning (RL) in networks (Intelligent Management)
 - ✓In terms of networking monitoring system, to achieve fair resource allocation for nodes within the wire or wireless mesh setting
- Motivation in our work
 - ✓ Networking issues such as connectivity, traffic management, fast internet without latency and etc.
 - ✓ML-based mechanisms such as reinforcement learning [RL] will provide network solutions with multiple cases against human operating capacities

Proposed Method

- **♦** Multi-agent Reinforcement Learning process cycle
 - ✓ Reinforcement Learning (RL)
 - ✓ Action, State and Reward
 - ✓ Policy for Monitoring and Management

Proposed Method 1 (cont'd)

- **♦** Normal Process vs RL Learning Process
 - ✓Initial random exploration for learning process
 - √ Random for the 1st processing
 - **✓** Updated policy after random process

Proposed Method 1 (cont'd)

- **♦** Multi-agent Reinforcement Learning (RL) Technologies
 - ✓ Reinforcement Learning (RL)
 - √ Policy using Distance and Frequency
 - **✓ Distributed Computing Node**

Node Terrain 2

Maximum Reward maxR = $max\{D(s_{\iota},UP), D(s_{\iota},RIGHT), D(s_{\iota},DOWN), D(s_{\iota},LEFT)\}$

Proposed Method 2

- **◆** Agent Sharing Information
 - ✓Agents should take actions and transfer the states to the global environment under reinforcement learning (RL), then it would share the information with other agents

Proposed Method 2 (cont'd)

- **◆** Agent Sharing Information
 - ✓ Effect of sharing information vs not sharing information
 - ✓ Initially Random process for the 1st trial
 - ✓ Efficient performance with shared information between agents

Sharing Information

Not Sharing Information

With Possible Network Scenario with RL

♦ Autonomous Driving System

✓ Self-automotive driving without human supervision depending on optimized trust region policy

Wireless Sensor Network (WSN)

✓RL in WSNs has been applied in a wide range of schemes such as cooperative communication, routing and rate control for intelligent monitoring and management

◆ Routing Enhancement

✓Routers in the multicast routing protocol are determined to discover optimal route with a predicted reward, and then the routers create the optimal path with multicast transmissions to reduce the overhead

On-going work

♦ Adaptive Networking model on Routing using RL

Next Step

- ◆ We create adaptive intelligent networking management Model with RL
- **♦** We also set up RL scenario and preprocessing for Dataset

Thank you

Comment or Question?

Email: mskim16@etri.re.kr