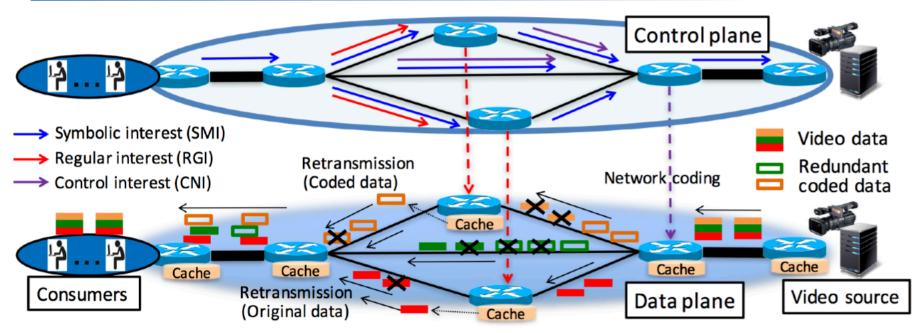
IRTF NWCRG, Jul. 2017, Prague, Czech Republic

Low Latency Low Loss Streaming using In-Network Coding and Caching

Kazuhisa Matsuzono (NICT) Hitoshi Asaeda (NICT) Thierry Turletti (Inria)

(In Proc. IEEE Infocom 2017, Apr. 2017, Atlanta, USA)

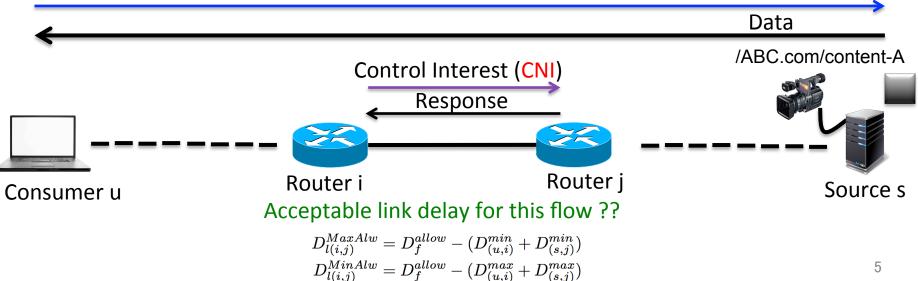

Motivation

- Target
 - UHD-level (4K/8K) delay-sensitive video streaming
- Requirements
 - Low latency (about 150ms) for interactive communication
 - ITU-T recommendation G.114
 - Low packet loss to maintain high QoE
 - Efficient packet delivery to support a large number of receivers
- Proposal
 - L4C2 (Low Latency Low Loss streaming using In-network Coding and Caching)

L4C2: Basic Idea

- Leveraging CCN/NDN features
 - Name-based data requests/forwarding, including multicast and multipath
- Enabling adaptive hop-by-hop data forwarding within an acceptable end-to-end delay
 - In-network coding (RLNC)/caching for efficient data recovery
 - Data recovery within an estimated acceptable link delay (not end-to-end delay)
 - Data recovery based on a measured data loss rate
- Newly defined Symbolic Interest (SMI) and Control Interest (CNI)
 - SMI: stream request including layer information
 - CNI: RTT measurement, notify redundancy level, switch to RGI

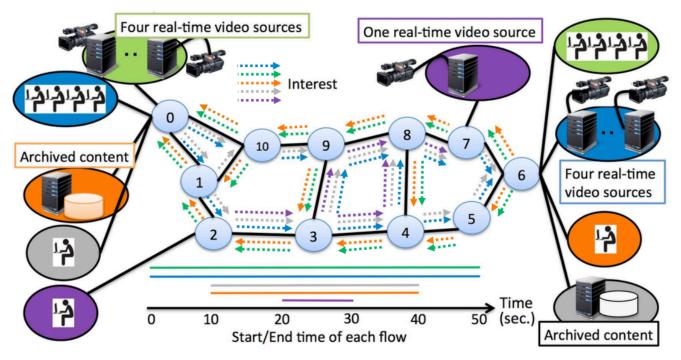
L4C2: System Architecture


- Three types of interest messages:
 - (1) SMI, (2) RGI (retransmission request), and (3) CNI.

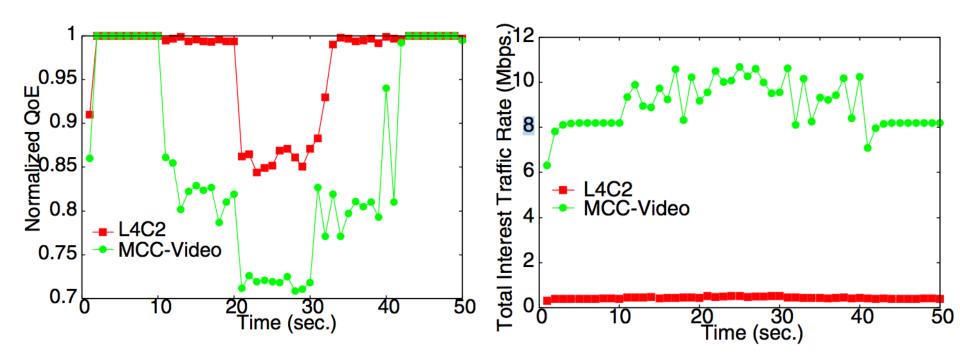
• Network Coding:

- Applied for each coding group which consists of the k different original/coded data packets
 - Encoding vectors are randomly selected from GF(2⁸)
 - k is set to a constant value considering the waiting time to recover lost data

L4C2: Estimating Link Conditions


- Data loss rate
 - Calculated from Seq-num and NC-params (k) stated in Data header
- Acceptable link delay
 - Router knows the acceptable e2e delay (e.g. 150ms) when receiving Data.
 - Router *i* retrieves D_(s,i) using CNI
 - Router *i* informed $D_{(u,i)}$ when receiving CNI

Symbolic Interest (SMI)


Simulation

- Parameters
 - Real-time video rate (total 35Mbps): 20/10/5 Mbps
 - Interest/Data packet size: 120/1024 bytes
 - Acceptable E2E delay: 150ms
- Scenario
 - Investigate user's QoE, using an existing QoE model
 - Comparison with state-of-the art for multipath data retrieval in CCN.

LinkBW/Queue/Delay: 100Mbps/100pkt/5ms

(a) Normalized QoE of real-time video (b) Interest traffic rate at link (9,8) streaming flows

[MCC-Video] G. Carofiglio, et al, "Optimal multipath congestion control and request forwarding in informationcentric networks," Proc. IEEE ICNP 2013.

Potential Work in NWCRG

- (Describe common research challenges)
- Describe a baseline scenario for NC for ICN/CCN
- Discuss about in-network coding, including;
 - Clarify problem statement and introduce recent work
 - Compare with RLNC and other codes
 - Investigate block coding vs. sliding window coding approaches