Less latency and better protection with sliding window codes: a robust multimedia CBR broadcast case study

Vincent Roca, B. Teibi (Inria, FR) C. Burdinat, T. Tran, C. Thienot (Expway, FR)

July 2017, IETF99, Prague

Note well

- we, authors, didn't try to patent any of the material included in this presentation
- we, authors, are not reasonably aware of patents on the subject that may be applied for by our employer
- if you believe some aspects may infringe IPR you are aware of, then fill in an IPR disclosure and please, let us know

Our case study

 (1) existing 3GPP Multimedia Broadcast/Multicast Service (MBMS) and (2) future 3GPP Mission Critical Push-To-Talk (MCPTT) standards

- Oeverybody's interested by the same content at the same time at the same place
 - audio \Rightarrow adhoc solution
 - files \Rightarrow FLUTE/ALC + block code
 - video \Rightarrow ???
- **Oend-to-end latency DOES matter**

The key question: to what extent is the intuition true with more complex loss models?

Two types of benefits for sliding window

reduced FEC related latency

intuition:

Orepair packets are quickly produced and they quickly recover an isolated loss

• improved robustness for real-time flows

intuition:

Oencoding windows overlap with one another which better protects against long loss bursts

Obecause of reduced latency, encoding/decoding window sizes are larger than block sizes

Experimental setup

non-ideal block code (in 3GPP std)

• compare RLC vs. Reed-Solomon vs. Raptor codes

sliding window code

ideal block code
(max. loss recovery performance!)

Oevaluation based on true C-language codecs, using an update of <u>http://openfec.org</u>

only transmissions are simulated

Oassume CBR transmissions

- because 3GPP defines CBR channels
- because we solely focus on FEC codes

Ouse 3GPP loss scenarios representative of mobile use-cases^(*)

Experimental setup... (2)

How much repair traffic to achieve the target quality?

In turn this parameter determines:

- block or en/decoding window sizes
- maximum source flow bitrate

Experimental setup... (3)

• take CBR packet scheduling into account ORLC rep₀ rep₁ rep₂ rep₃ rep₄ rep₅ rep₆ rep₇ rep₈ rep₉ rep₁₀ rep₁₁ rep₁₂ rep₁₃

. . .

src₀ src₁ src₂

block-BEGINNING 1

FEC enc.

 $src_3 src_4 src_5 src_6 src_7 src_8 src_9 src_{10} src_{11} src_{12} src_{13}$

block i+1

time

Experimental setup... (4)

• take 3GPP mobility scenarios into account^(*)

Ovehicle passenger \Rightarrow **losses are "evenly" spread**

4 different average loss rates (1%, 5%, 10%, 20%)

Opedestrian \Rightarrow **loss bursts**

4 different average loss rates (1%, 5%, 10%, 20%)

3 km/h vehicle passenger, 20% average loss rate

Understanding the following figures

Results: min. FEC protection required...

240 ms latency budget for FEC

RLC is **always significantly better**, achieving the desired target quality with significantly less repair traffic!

Results: min. FEC protection required...

480 ms latency budget for FEC \Rightarrow longer block/sliding window sizes

With a double "latency budget", RLC remains significantly better

Hey, we have a single output flow for all receivers!

we're dealing with multicast/broadcast, so...
 Omany receivers with different channels

⇒ decide the worst channel you want to support and/or the maximum repair traffic overhead we can "tolerate"

Othe (single) multicast data flow will use this code rate
 Omeasure the experienced latency sufficient for a 10⁻³ residual loss rate for each supported channel
 Ocompare...

And in terms of latency...

480 ms latency budget for FEC, and **fixed 50% repair traffic** (code rate=2/3)

more channels are supported by RLC, and the added latency to good receivers is far below the maximum 480 ms latency budget

NB: R-S Beginning and Raptor codes not considered here (poor perf.)

How fast is it?

• sufficiently with RLC (ARM Cortex-A15@1.5GHz, 480ms latency budget)

Conclusions

sliding window codes really make a difference... O...when trying to minimize FEC related latency

Osignificant robustness improvement (due to larger windows that overlap)
 Oless latency to achieve a certain target quality
 Oextremely fast (we're dealing with very small window sizes)

we focused on broadcast/multicast communications
 O... but make sense with unicast communications as well

Conclusions (2)

• Related IETF activity:

O"Forward Error Correction (FEC) Framework Extension to Sliding Window Codes"

<u>draft-ietf-tsvwg-fecframe-ext-00</u>

O"Sliding Window Random Linear Code (RLC) Forward Erasure Correction (FEC) Scheme for FECFRAME"

<u>draft-ietf-tsvwg-rlc-fec-scheme-00</u>

A question? <u>vincent.roca@inria.fr</u>