
1

Less latency and better protection
with sliding window codes:
a robust multimedia CBR

broadcast case study

Vincent Roca, B. Teibi (Inria, FR)
C. Burdinat, T. Tran, C. Thienot (Expway, FR)

July 2017, IETF99, Prague

Note well

lwe, authors, didn’t try to patent any of the
material included in this presentation

lwe, authors, are not reasonably aware of patents
on the subject that may be applied for by our
employer

l if you believe some aspects may infringe IPR you
are aware of, then fill in an IPR disclosure and
please, let us know

2

Our case study
l (1) existing 3GPP Multimedia Broadcast/Multicast

Service (MBMS) and (2) future 3GPP Mission
Critical Push-To-Talk (MCPTT) standards

❍everybody's interested by the same content at the same time
at the same place

• audio ⇒ adhoc solution
• files ⇒ FLUTE/ALC + block code
• video ⇒ ???

❍end-to-end latency DOES matter

3

Our case study (2)

44

FEC encoder FEC decoder

reconstructed flow

specify a target quality

real-time source flow

CBR channel (ex. LTE)

loss model
compare FEC:
- RLC
- Reed-Solomon
- Raptor

FEC latency budget
(e.g., does not consider

propagation delay)
…

src pkt src pkt src pkt src pkt src pkt src pkt repair repair …

time

repair

recovered

FEC encoding for this block

erasure recovered after some delay

src pkt src pkt src pkt src pkt src pkt src pktrepair repair …

time

repair

FEC encoding for this window

FEC encoding for this window

…

erasure quickly recovered…

recovered

block codes
sliding window codes

6

The key question:
to what extent is the intuition
true with more complex loss

models?

Two types of benefits for sliding window
l reduced FEC related latency

intuition:
❍repair packets are quickly produced and they quickly recover

an isolated loss

l improved robustness for real-time flows
intuition:

❍encoding windows overlap with one another which better
protects against long loss bursts

❍because of reduced latency, encoding/decoding window sizes
are larger than block sizes

7

Experimental setup

l compare RLC vs. Reed-Solomon vs. Raptor codes

❍evaluation based on true C-language codecs, using an update
of http://openfec.org

• only transmissions are simulated

❍assume CBR transmissions
• because 3GPP defines CBR channels
• because we solely focus on FEC codes

❍use 3GPP loss scenarios representative of mobile use-cases(*)

8

sliding window code ideal block code
(max. loss recovery performance!)

(*) ETSI, “Evaluation of MBMS FEC enhancements (final report),” Dec. 2015, 3GPP TR 26.947 version 13.0.0 Rel. 13

non-ideal block code (in 3GPP std)

Experimental setup… (2)

9

FEC encoder FEC decoder

CBR channel
(100 pkts/s)

loss model

reconstructed flow

target quality:
< 10-3 residual losses

real-time source flow

FEC latency budget: 240 ms or 480 ms

How much repair traffic to achieve the target quality?
In turn this parameter determines:
• block or en/decoding window sizes
• maximum source flow bitrate

src0
src1

src2
src3

src4
src5

src0
src1 src3

src4
src5

src2

rep6
rep7

rep8
rep9

rep10
rep11

block i

block i+1

rep6
rep7

rep8
rep9

rep10
rep11

FEC
encoding

rep6
rep7

…
rep9

rep8

FEC
encoding

time

src0 src1 src2 src3 src4 src5 src0 src1 src2 src3 src4 src5

rep6 rep7 rep8 rep9 rep10 rep11block i

block i+1
rep6 rep7 rep8 rep9 rep10 rep11

FEC
encoding

rep6 rep7 …

FEC
encoding

src0 src1

time

rep0 rep1 rep2 rep3 rep4 rep5 rep6 rep7 rep8 rep9 rep10 rep11 rep12 rep13

src0 src1 src2 src3 src4 src5 src6 src7 src8 src9 src10 src11 src12 src13

…… FEC enc.

time

Experimental setup… (3)
l take CBR packet scheduling into account
❍RLC

❍two possibilities with Reed-Solomon and Raptor
(depends on implementation details)

1. block-BEGINNING

2. block-DURING

10

Experimental setup… (4)
l take 3GPP mobility scenarios into account(*)

❍vehicle passenger ⇒ losses are "evenly" spread
4 different average loss rates (1%, 5%, 10%, 20%)

❍pedestrian ⇒ loss bursts
4 different average loss rates (1%, 5%, 10%, 20%)

11

120 km/h vehicle passenger, 20% average loss rate

3 km/h vehicle passenger, 20% average loss rate

each "#" indicates a loss

(*) ETSI, “Evaluation of MBMS FEC enhancements (final report),” Dec. 2015, 3GPP TR 26.947 version 13.0.0 Rel. 13

(a) 240 ms budget, 120 km/h channel (b) 240 ms budget, 3 km/h channel

(c) 480 ms budget, 120 km/h channel (d) 480 ms budget, 3 km/h channel

Fig. 6. Required AL-FEC protection to achieve 10�3 residual loss quality with a 240ms or 480ms latency budget, depending on the mobility scenario. A
missing bar indicates a failure to achieve the target quality.

Channel convolutional block - beginning block - during
120 km/h, 1% loss dw = 45, ew = 33 k = 43 k = 21
120 km/h, 5% loss dw = 41, ew = 30 k = 33 k = 18
120 km/h, 10% loss dw = 36, ew = 27 k = 27 k = 16
120 km/h, 20% loss dw = 30, ew = 22 k = 19 k = 12
3 km/h, 1% loss dw = 41, ew = 30 k = 35 k = 18
3 km/h, 5% loss dw = 31, ew = 23 k = 16 k = 13
3 km/h, 10% loss dw = 24, ew = 18 k = 6 k = 10
3 km/h, 20% loss dw = 14, ew = 10 FAILURE k = 4

TABLE II. EVOLUTION OF THE K, DW, AND EW PARAMETERS ACROSS
THE MOBILITY SCENARIOS, WITH A 480MS LATENCY BUDGET.

Interestingly, the ”block - BEGINNING” mode behave well
with good channels (i.e., 120 km/h channels, Fig. 6(a) and
6(c)), but becomes counterproductive with serious erasure
bursts and finally fails to achieve the target quality (Fig. 6(b)
and 6(d)). With convolutional codes, the encoding window is
significantly larger which favors robustness. Only the worst
channel (3km/h, 20% losses) could not be protected with
latency budget 240 ms: a larger latency budget is needed.

C. Robustness and Experienced Latency with
Multicast/Broadcast Delivery

In Section III-B we determined the required AL-FEC
protection to achieve a certain quality. Since our target use-
case deals with multicast/broadcast transmissions, a single data
stream will be used that should satisfy most of the receivers.
A strategic choice is needed: can we consider all or only a
subset of the mobility scenarios, and at what cost? Answering
this question means choosing a certain code rate. We believe

code rate 0.66 code rate 0.5
240 ms 480 ms 240 ms 480 ms

convolutional ew = 11 ew = 23 ew = 9 ew = 18
dw = 15 dw = 31 dw = 12 dw = 24

block - BEGINNING k = 11 k = 23 k = 8 k = 16
block - DURING k = 7 k = 14 k = 6 k = 12

TABLE III. PARAMETERS FOR SIMULATIONS WITH FIXED CODE RATE.

Improvement ratio: best block latency / convolutional latency
Channel 240 ms latency budget 480 ms latency budget
120 km/h, 1% loss 7.38 11.00
120 km/h, 5% loss 2.43 4.14
120 km/h, 10% loss +1 (block FAILURE) 2.64
120 km/h, 20% loss FAILURE (all) FAILURE (all)
3 km/h, 1% loss 1.64 2.OO
3 km/h, 5% loss FAILURE (all) +1 (block FAILURE)
3 km/h, 10% loss FAILURE (all) FAILURE (all)
3 km/h, 20% loss FAILURE (all) FAILURE (all)

TABLE IV. IMPROVEMENT RATIO FOR CONVOLUTIONAL CODES OVER
THE BEST (I.E., LOWEST LATENCY) BLOCK MODE EACH TIME.

that a code rate below 0.5 is unreasonable (in line with [2]),
even if the worst channels cannot be supported (a larger latency
budget is needed to support them). Therefore we focus on:

• code rate 0.66: the CBR flow consists of 2/3 of source
traffic and 1/3 of repair traffic;

• code rate 0.5: the CBR flow is equally divided into
source and repair traffic.

Other parameters are derived by Equations (2)-(5) (Table III).

Let us start with code rate 0.66. Fig. 7 shows the resulting

Understanding the following figures

12

for given loss model and latency budget, what protection do we need to
achieve a 10-3 residual loss quality

RLC

Reed-Solomon
block-DURING

required repair traffic overhead
(100% means that repair traffic
has same bitrate as source
traffic) Reed-Solomon

block-BEGINNING

RLC: 23%
RS-BEGINNING: 28%

RS-DURING: 39%

average loss rate for the channel

Results: min. FEC protection required…

13

RLC is always significantly better, achieving the desired target quality with
significantly less repair traffic!

240 ms latency budget for FEC

(a) 240 ms budget, 120 km/h channel (b) 240 ms budget, 3 km/h channel

(c) 480 ms budget, 120 km/h channel (d) 480 ms budget, 3 km/h channel

Fig. 6. Required AL-FEC protection to achieve 10�3 residual loss quality with a 240ms or 480ms latency budget, depending on the mobility scenario. A
missing bar indicates a failure to achieve the target quality.

decoding at most 10�3 (at most 1 missing source packet out
of 1000). The protection is measured by the repair traffic
overhead, which is linked to the code rate:

repair ovherhead = (
1

cr

� 1) ⇤ 100

For instance, cr = 2/3 corresponds to a 50% repair overhead
(50% traffic in addition to source traffic), and cr = 0.5 to a
100% repair overhead (traffic is doubled). From Fig. 6, sliding
window codes always yield the best results, no matter the block
code variant considered nor the channel. The target quality is
always achieved (except for the most difficult channel), and
with less repair overhead.

Channel RLC R-S - BEGINNING R-S - DURING
120 km/h, 1% loss dw = 45, ew = 33 k = 43 k = 21
120 km/h, 5% loss dw = 41, ew = 30 k = 33 k = 18
120 km/h, 10% loss dw = 36, ew = 27 k = 27 k = 16
120 km/h, 20% loss dw = 30, ew = 22 k = 19 k = 12
3 km/h, 1% loss dw = 41, ew = 30 k = 35 k = 18
3 km/h, 5% loss dw = 31, ew = 23 k = 16 k = 13
3 km/h, 10% loss dw = 24, ew = 18 k = 6 k = 10
3 km/h, 20% loss dw = 14, ew = 10 FAILURE k = 4

TABLE II. EVOLUTION OF THE K, DW, AND EW PARAMETERS ACROSS
THE MOBILITY SCENARIOS, WITH A 480MS LATENCY BUDGET.

To further analyze the situation, we now study how k, dw,
and ew evolve as the mobility scenario becomes more difficult.
Table II lists them in case of a 480 ms latency budget. With
block codes, as more repair traffic is needed, the fixed budget

latency requires the block size to be progressively reduced,
until it reaches ridiculously small values (e.g., k = 4). Inter-
estingly, the ”block - BEGINNING” mode behaves well with
good channels (i.e., 120 km/h channels, Fig. 6(a) and 6(c)),
but becomes counterproductive with serious loss bursts and
finally fails to achieve the target quality (Fig. 6(b) and 6(d)).
This is in line with intuition since the ”block - BEGINNING”
mode concentrates source and repair packets of a given block
to a smaller time period compared to the other mode, and
therefore is more rapidly impacted by long loss bursts. With
sliding window codes, the encoding window is significantly
larger which favors robustness, as Fig. 6 highlighted.

Note that all the above results have been achieved with
3GPP channels for seed = 1. Three more channels are
available for each scenario (seeds 2, 3 and 4). Since they yield
very similar results, we do not show them.

From the above tests it appears that the ”block - BE-
GINNING” mode should not be used (i.e., two two FIFOs
should always be used by the sender, see Section II-B), and
we therefore ignore this configuration from the following tests.
It also appears that Raptor codes, that behave badly with small
blocks (even if using G = 10 mitigates this impact), are not
appropriate. However we keep them into consideration, being
part of the current 3GPP MBMS standard, as a reference.

RLC
Reed-

Solomon
Raptor

Results: min. FEC protection required…

14

With a double "latency budget", RLC remains significantly better

480 ms latency budget for FEC ⇒ longer block/sliding window sizes

(a) 240 ms budget, 120 km/h channel (b) 240 ms budget, 3 km/h channel

(c) 480 ms budget, 120 km/h channel (d) 480 ms budget, 3 km/h channel

Fig. 6. Required AL-FEC protection to achieve 10�3 residual loss quality with a 240ms or 480ms latency budget, depending on the mobility scenario. A
missing bar indicates a failure to achieve the target quality.

decoding at most 10�3 (at most 1 missing source packet out
of 1000). The protection is measured by the repair traffic
overhead, which is linked to the code rate:

repair ovherhead = (
1

cr

� 1) ⇤ 100

For instance, cr = 2/3 corresponds to a 50% repair overhead
(50% traffic in addition to source traffic), and cr = 0.5 to a
100% repair overhead (traffic is doubled). From Fig. 6, sliding
window codes always yield the best results, no matter the block
code variant considered nor the channel. The target quality is
always achieved (except for the most difficult channel), and
with less repair overhead.

Channel RLC R-S - BEGINNING R-S - DURING
120 km/h, 1% loss dw = 45, ew = 33 k = 43 k = 21
120 km/h, 5% loss dw = 41, ew = 30 k = 33 k = 18
120 km/h, 10% loss dw = 36, ew = 27 k = 27 k = 16
120 km/h, 20% loss dw = 30, ew = 22 k = 19 k = 12
3 km/h, 1% loss dw = 41, ew = 30 k = 35 k = 18
3 km/h, 5% loss dw = 31, ew = 23 k = 16 k = 13
3 km/h, 10% loss dw = 24, ew = 18 k = 6 k = 10
3 km/h, 20% loss dw = 14, ew = 10 FAILURE k = 4

TABLE II. EVOLUTION OF THE K, DW, AND EW PARAMETERS ACROSS
THE MOBILITY SCENARIOS, WITH A 480MS LATENCY BUDGET.

To further analyze the situation, we now study how k, dw,
and ew evolve as the mobility scenario becomes more difficult.
Table II lists them in case of a 480 ms latency budget. With
block codes, as more repair traffic is needed, the fixed budget

latency requires the block size to be progressively reduced,
until it reaches ridiculously small values (e.g., k = 4). Inter-
estingly, the ”block - BEGINNING” mode behaves well with
good channels (i.e., 120 km/h channels, Fig. 6(a) and 6(c)),
but becomes counterproductive with serious loss bursts and
finally fails to achieve the target quality (Fig. 6(b) and 6(d)).
This is in line with intuition since the ”block - BEGINNING”
mode concentrates source and repair packets of a given block
to a smaller time period compared to the other mode, and
therefore is more rapidly impacted by long loss bursts. With
sliding window codes, the encoding window is significantly
larger which favors robustness, as Fig. 6 highlighted.

Note that all the above results have been achieved with
3GPP channels for seed = 1. Three more channels are
available for each scenario (seeds 2, 3 and 4). Since they yield
very similar results, we do not show them.

From the above tests it appears that the ”block - BE-
GINNING” mode should not be used (i.e., two two FIFOs
should always be used by the sender, see Section II-B), and
we therefore ignore this configuration from the following tests.
It also appears that Raptor codes, that behave badly with small
blocks (even if using G = 10 mitigates this impact), are not
appropriate. However we keep them into consideration, being
part of the current 3GPP MBMS standard, as a reference.

RLC
Reed-

Solomon
Raptor

Hey, we have a single output flow for all
receivers!

lwe're dealing with multicast/broadcast, so…
❍many receivers with different channels

⇒ decide the worst channel you want to support and/or the
maximum repair traffic overhead we can "tolerate"

❍the (single) multicast data flow will use this code rate
❍measure the experienced latency sufficient for a 10-3 residual

loss rate for each supported channel
❍compare…

(a) cr=0.66, 120 km/h channel (b) cr=0.66, 3 km/h channel

(c) cr=0.5, 120 km/h channel (d) cr=0.5, 3 km/h channel

Fig. 7. Experienced latency of RLC and Reed-Solomon - DURING codes, for code rates 0.66 (top) and 0.5 (bottom), and 480 ms latency budget.

C. Experienced Robustness and Latency Once the Code Rate
is Chosen

In Section IV-B we determined the required AL-FEC
protection to achieve a certain quality. Since we focus on
multicast/broadcast transmissions, a single data stream will
be used that should satisfy most of the receivers, if not all.
A strategic choice is needed: can we consider all or only a
subset of the mobility scenarios, and at what cost? Answering
this question means choosing a certain code rate. We believe
that a code rate below 0.5 is unreasonable (this is in line with
[2]), even if the worst channels cannot be supported (a larger
latency budget would be needed). Therefore we focus on:

• code rate 0.66: the CBR flow consists of 2/3 of source
traffic and 1/3 of repair traffic;

• code rate 0.5: the CBR flow is equally divided into
source and repair traffic.

Other parameters are derived by Equations (2)-(5) (Table III).

code rate 0.66 code rate 0.5
240 ms 480 ms 240 ms 480 ms

RLC ew = 11 ew = 23 ew = 9 ew = 18
dw = 15 dw = 31 dw = 12 dw = 24

Reed-Solomon - DURING k = 7 k = 14 k = 6 k = 12
Raptor - DURING (G=10) k = 70 k = 140 k = 60 k = 120

TABLE III. PARAMETERS FOR SIMULATIONS WITH FIXED CODE RATE.

Fig. 7-(a) to (d) show the resulting experienced latency
to achieve the 10�3 target quality and a 480 ms latency

budget for RLC and Reed-Solomon only, for the two code
rates. Unsurprisingly, the latency with sliding window codes
is always significantly lower. With good channels, the needed
latency to achieve the target quality is an order of magnitude
(2.0 or 11.0 times) lower with sliding window codes with code
rate 0.66, and this gain is even higher with code rate 0.5. This
result supports our claim that good receivers will experience
a significantly reduced latency, with sliding window codes, or
said differently, that FEC protection does not negatively impact
their experienced latency.

D. Encoding/Decoding Speed on an Embedded Board

We carried out speed evaluations on a Compulab
Eval-AM57x board, featuring a dual-core ARM Cortex-
A15@1.5GHz CPU (TI Sitara AM5728) (all codecs leverage
on its NEON SIMD facility), 2GB RAM, and running 32-bit
Linux Debian (4.4.41 kernel), in order to be relatively close
to smartphones’ hardware, our target devices. All tests are
carried out on a single core, using 100% of it, and re-use
the same eperftool tool as previously. Transmissions are
only simulated (everything takes place in the same process),
meaning it has no significant impact. Speed is evaluated by
measuring the total encoding (resp. decoding) time. Since these
processing times fluctuate a little bit across experiments (a test
can last a few seconds during which operating system activities
can be triggered), we repeat them 10 times and keep the highest
encoding (resp. decoding) speed in order to better estimate
the ”true” speed. Because the three codecs have been natively

And in terms of latency…

16

RLC

Reed-Solomon
- DURING

480 ms latency budget for FEC, and fixed 50% repair traffic (code rate=2/3)

more channels are supported by RLC, and the added latency to good receivers is
far below the maximum 480 ms latency budget

NB: R-S Beginning and Raptor codes
not considered here (poor perf.)

How fast is it?
l sufficiently with RLC (ARM Cortex-A15@1.5GHz, 480ms latency budget)

17

Fig. 8. Encoding speed of the various codecs for 480 ms latency budget.

developed for our OpenFEC library and rely on the same low
level libraries, our comparaison is fair. It should also be noted
that the Raptor codec considered is Expway’s highly optimized
commercial codec (e.g., decoding relies on Structured Gaus-
sian Elimination) and not Qualcomm’s Raptor10 codec. To the
best of our knowledge, nobody has developed such a large set
of AL-FEC codecs nor published such a comparison, making
this comparison unique.

Let us focus on the 480 ms latency budget case, the
most realistic configuration in terms of number of supported
channels. The encoding speeds are shown in Fig. 8. We see that
Raptor features the lowest speed, which is easy to understand:
any encoding first requires solving a linear system in order to
produce intermediate packets that are in a second step used
by LT encoding to produce repair packets. On the opposite,
Reed-Solomon and RLC codes feature a much higher encoding
speed, with a clear advantage to Reed-Solomon. Indeed, Reed-
Solomon is favoured by its reuse of the generator matrix across
tests (since the k parameter remains the same, so does the
matrix). This matrix creation time, extremely significant, is
here negligible. Secondly RLC uses ew = 23 or 18 unlike
Reed-Solomon where k = 14 or 12. If this size increase is
highly beneficial in terms of robustness, it also increases the
computational complexity.

Decoding speeds are shown in Fig. 9. Across all supported
channels, the Raptor decoding speeds are both constant and
extremely low (between 114 and 155 Mbps for cr = 0.66,
and 86 and 134 Mbps for cr = 0.5). This speed is close to the
encoding speeds, because encoding and decoding are similar
with Raptor: first of all a linear system is solved in order
to re-build all the intermediate packets, and in a second step
an LT encoding recovers the erased source packets. On the
opposite, RLC achieves decoding speeds between 807 Mbps
and 2.833 Gbps for cr = 0.66, and 745 Mbps and 2.044 Gbps
for cr = 0.5. If Reed-Solomon is significantly faster than RLC
for very good channels (1% average loss rate), this is often the
opposite at 5% and higher loss rates.

These tests prove that RLC (and Reed-Solomon) offer an
order of magnitude encoding and decoding speed improvement
over the existing Raptor codes. Of course, these results are only
meaningful for the use-case considered (e.g., the situation is
totally different for file transfers that involve large block sizes,
the primary target for Raptor codes).

V. RELATED WORKS

Such sliding window AL-FEC codes as Random Linear
Network Codes (RLNC) [13] have received a lot of attention
for network coding use-cases. Their benefits against block
codes have been studied for instance in [14]. Our work differs
by the end-to-end nature of our use-case, without in-network
re-coding capability, and also by the fact we consider broad-
cast/multicast communications without any feedback channel.

The recent work from Wunderlich et al. [15] is very
close to ours as it compares variants of RLNC codes for
real-time flows: a variant based on a block approach and a
variant based on either infinite or finite sliding window. If
authors claim to have the ”first practical generation-less sliding
window RLNC scheme”, the RLC codes we consider in the
current work and the previous ones [7][8] already fall into this
category: they are designed from scratch as finite size sliding
window codes. The main differences with respect to this very
interesting work come from the methodology followed: we
consider the mobility scenarios specified by the 3GPP SA4
working group to compare AL-FEC performance, we consider
a unprecedented set of codes, including Raptor codes, and
perform performance evaluation in a non traditional but highly
meaningful manner: what is the required AL-FEC protection
required to achieve the target residual-loss quality? This is in
our opinion the key method to compare the various codes.
Finally [15] considers sub-optimal configurations, ignoring
the highly effective ”Decoding Beyond Maximum Latency”
optimization altogether [16][7] unlike our work.

VI. CONCLUSIONS AND DISCUSSIONS

This work demonstrates that AL-FEC sliding window
codes, in particular RLC codes, outperform all block codes
when dealing with real-time flows and CBR communications,
both in terms of reduced latency and perhaps more impor-
tantly improved robustness against various types of mobility
scenarios. The tests also show that our RLC codec outperforms
Raptor codes in terms of encoding and decoding speeds, in
addition to the above benefits.

This work does not consider the diversity of sliding window
codes. It focusses on ”basic” RLC on GF(28) without trying
to experiment with sparse variants, with other finite fields, nor
with structured codes [19][20]. However, if these alternatives
are most probably valuable for high bitrate flows and large
encoding/decoding windows, this is less significant for the
present work where ew size is at most equal to 33.

If these results motivate our proposal of extending
FECFRAME to sliding window codes [10][8], we also believe
these codes could be benefit to other transport protocols where
latency does matter. For instance, they could favourably replace
trivial unidimensional or bidimensional (A.K.A. interleaved)
XOR codes considered in such protocols as QUIC [17] or RTP
[18]. Such trivial XOR codes exhibit bad loss recovery perfor-
mance compared to their transmission overheads: simplicity is
important but it should not compromise efficiency. Using RLC
instead will be the subject of future works.

REFERENCES

[1] T. Paila, R. Walsh, M. Luby, V. Roca, and R. Lehtonen, “FLUTE - File
Delivery over Unidirectional Transport,” Nov. 2012, IETF Request for
Comments, RFC 6726.

(a) cr=0.66, 120 km/h channel (b) cr=0.66, 3 km/h channel

(c) cr=0.5, 120 km/h channel (d) cr=0.5, 3 km/h channel

Fig. 9. Decoding speed of the various codecs for code rates 0.66 (top) and 0.5 (bottom), and 480 ms latency budget.

[2] M. Watson, A. Begen, and V. Roca, “Forward error correction (fec)
framework,” Jun. 2011, IETF Request for Comments, RFC 6363.

[3] “3gpp; technical specification group services and system aspects;
multimedia broadcast/multicast service (mbms); protocols and codecs
(release 13),” Mar. 2016, 3GPP TR 26.346 version 13.4.0 Release 13.

[4] M. Luby, A. Shokrollahi, M. Watson, T. Stockhammer, and L. Minder,
“RaptorQ Forward Error Correction Scheme for Object Delivery,” IETF
Request for Comments, RFC 6330 (Standards Track), Aug. 2011.

[5] J. Lacan, V. Roca, J. Peltotalo, and S. Peltotalo, “Reed-solomon
forward error correction (fec) schemes,” Apr. 2009, IETF Request for
Comments, RFC 5510.

[6] V. Roca, C. Neumann, and D. Furodet, “Low density parity check (ldpc)
staircase and triangle forward error correction (fec) schemes,” Jun. 2008,
IETF Request for Comments, RFC 5170.

[7] V. Roca, B. Teibi, C. Burdinat, T. Tran, and C. Thienot, “Block or
Convolutional AL-FEC Codes? A Performance Comparison for Robust
Low-Latency Communications,” Nov. 2016, unpublished working doc-
ument, HAL open-archive, hal-01395937.

[8] V. Roca, “Random linear codes (rlc) forward error correction (fec)
scheme for fecframe,” Feb. 2017, IETF TSVWG work in progress,
draft-roca-tsvwg-rlc-fec-scheme-00.

[9] V. Roca, M. Cunche, C. Thienot, J. Detchart, and J. Lacan, “RS +
LDPC-Staircase codes for the erasure channel: Standards, usage and
performance,” in 9th IEEE Conf. on Wireless and Mobile Computing,
Networking and Communications (WiMob 2013), Aug. 2013.

[10] V. Roca and A. Begen, “Forward error correction (fec) framework
extension to convolutional codes,” Feb. 2017, IETF TSVWG work in
progress, draft-roca-tsvwg-fecframev2-03.

[11] ETSI, “Evaluation of mbms fec enhancements (final report),” Dec. 2015,
3GPP TR 26.947 version 13.0.0 Release 13.

[12] M. Luby, A. Shokrollahi, M. Watson, and T. Stockhammer, “Raptor
Forward Error Correction Scheme for Object Delivery,” Oct. 2007, IETF
Request for Comments, RFC 5053 (Standards Track).

[13] F. Fitzek, M. Pedersen, J. Heide, and M. Medard, “Network coding:
Applications and implementations on mobile devices,” in 5th ACM
Workshop on Performance Monitoring and Measurement of Heteroge-
neous Wireless and Wired Networks, Oct. 2010.

[14] M. Toemoeskoezi, F. Fitzek, D. Lucani, M. Pedersen, and P. Seeling,
“On the delay characteristics for point-to-point links using random
linear network coding with on-the-fly coding capabilities,” in 20th
European Wireless Conference, May 2014.

[15] S. Wunderlich, F. Gabriel, S. Pandi, and F. Fitzek, “We dont need no
generation - a practical approach to sliding window rlnc,” in IEEE 2017
Wireless Days, Mar. 2017.

[16] P.-U. Tournoux, T. Tran-Thai, E. Lochin, and J. Lacan, “When on-
the-fly erasure code makes late video decoding happen,” in 25th ACM
Workshop on Network and OS Support for Digital Audio and Video
(NOSSDAV’15), Mar. 2015.

[17] I. Swett, “QUIC FEC v1,” Feb. 2016, unpublished working paper.
[18] M. Zanaty, V. Singh, A. C. Begen, and G. Mandyam, “RTP Payload

Format for Flexible Forward Error Correction (FEC),” Oct. 2016, IETF
PAYLOAD work in progress, draft-ietf-payload-flexible-fec-scheme-03.

[19] K. Matsuzono, V. Roca, and H. Asaeda, “Structured Random Lin-
ear Codes (SRLC): Bridging the Gap between Block and Convolu-
tional Codes,” in IEEE Global Communications Conference (GLOBE-
COM’14), Dec. 2014.

[20] D. E. Lucani, M. V. Pedersen, D. Ruano, C. W. Sorensen, F. Fitzek,
J. Heide, and O. Geil, “Fulcrum network codes: A code for fluid
allocation of complexity,” Nov. 2015, arxiv 1404.6620v2.

Encoding speed

Decoding speed (CR=0.66)

Conclusions
l sliding window codes really make a difference…

❍…when trying to minimize FEC related latency

❍significant robustness improvement (due to larger windows
that overlap)

❍less latency to achieve a certain target quality
❍extremely fast (we’re dealing with very small window sizes)

lwe focused on broadcast/multicast communications
❍… but make sense with unicast communications as well

18

Conclusions (2)
lRelated IETF activity:

❍“Forward Error Correction (FEC) Framework Extension to
Sliding Window Codes”

• draft-ietf-tsvwg-fecframe-ext-00

❍“Sliding Window Random Linear Code (RLC) Forward Erasure
Correction (FEC) Scheme for FECFRAME”

• draft-ietf-tsvwg-rlc-fec-scheme-00

lA question? vincent.roca@inria.fr

19

