Mutual TLS Profile for OAuth 2.0 | &9+

https://tools.ietf.org/html/draft-ietf-oauth-mtls-02 | I E T F

Brian Campbell
John Bradley

Nat Sakimura
Torsten Lodderstedt

IETF 99
Prague
July 2017

from IETF §3Ta_nd as seen on https://www.ietf.org/meeting/99/index.html



e
What is 1t? PEET

e Mutual TLS client authentication to the token
endpoint

e Mutual TLS sender constrained access tokens
for protected resources access



e
Why? 1 ETF

Mutual TLS client authentication is something that's been
done in practice for OAuth but we've never had a spec for
it

Mutual TLS sender constrained resources access binds
access tokens to the client certificate so they can't be
(re)played or used by any other entity

Banks “need” these for server to server APl use cases
being driven by new open banking regulations

Referenced by FAPI's “Read and Write API Security
Profile” as a suitable holder of key mechanism

Referenced by Open Banking API Security Profile



How Mutual TLS Client ‘jﬁ?@ﬁ’
Authentication Works

e MTLS client authentication to the token endpoint

TLS connection from client to token endpoint is
established with mutual X509 certificate authentication

Client includes the "client_id" HTTP request parameter in
all requests to the token endpoint

AS verifies that the MTLS certificate is the ‘right’ one for
the client

Trust model intentionally left open
Client and AS metadata



}

"igs":
"sub" :
"exp":
"nbf

How Mutual TLS Sender
Constrained Access Works i

Mutual TLS sender constrained resource access
Associate a hash of the certificate with the access token
TLS connection from client to resource is mutually authenticated TLS

E T F

The protected resource matches certificate from TLS connection to the certificate

hash in the access token
New JWT Confirmation Method

X.509 Certificate SHA-256 Thumbprint Confirmation Method: x5t#S256

New Confirmation Method for Token Introspection

Same data as JWT x5t#S256 confirmation returned in the introspection response and

checked by the protected resource

Requests registration of a "cnf" (confirmation) token introspection response parameter having
the same semantics and format as the claim of the same name defined in RFC7800 Proof-of-
Possession Key Semantics for JSON Web Tokens

"https://server.example.com",

"ty.webbfexample.com", . .
1493726400, JWT Confirmation

": 1493722800,

"enf":{

}

"x5t#5256": "bwcKOesc3ACC3DB2Y5_ 1ESsXEB091tc05089jdN-dg2"

HTTP/1.1 200 OK

Content-Type: application/json

{

}

"active":
"iss":
"sub":
"exp":
"nbf":

Token Introspection

true,
"https://server.example.com",
"ty.webbfexample.com",
1493726400,

1493722800,

"cnf":{

}

"x5t#5256": "bwcKOesc3ACC3DB2Y5_ 1lESsXEB091tc05089jdN-dg2”

5



\
§//

1l ETF

... and Running Code

e Recently stood up a proof of concept using
COTS AS and RS products utilizing general
mutual TLS support and existing
configuration/customization around issuance
and validation of access tokens



Next Steps

e The clock is ticking... take this thing to WGLC!




