
QUIC Unidirectional and
Bidirectional Streams

IETF 99
By Ian Swett

Background
QUIC needs to support HTTP

HTTP/2 supports both request/response and server push

Therefore the transport and application doc COMBINED must provide BOTH
bidirectional streams and unidirectional streams

Background
QUIC needs to support HTTP

HTTP/2 supports both request/response and server push

Therefore the transport and application doc COMBINED must provide BOTH
bidirectional streams and unidirectional streams

Use only one direction of a bidirectional stream

OR

Build bidirectional streams on two unidirectional streams

Bidirectional: Current draft
Pairs of incoming and outgoing streams: Think TCP

Pros:

● Ideal for HTTP requests and responses
● Large amounts of deployment experience

Cons:

● Requires sending an unnecessary STREAM frame with a FIN for server push
● Bugs:

Bidirectional: With Application manipulation (gQUIC)
Bidirectional, but the application closes half the stream without sending a FIN

Pros:

● Ideal for HTTP requests
● Large amounts of deployment experience
● Doesn’t require sending an unnecessary FIN

Cons:

● Transport state requires knowledge of the application state
● Feels a bit ugly to allow manipulating internal transport state

Bidirectional: Open streams half-closed
Adds a bit in the STREAM frame to indicate it should be opened half closed.

Pros:

● Saves sending an unnecessary response FIN for Server Push
● Small change to the existing draft

Cons:

● Uses a bit in the type byte
● Adds some transport complexity, particularly around implicitly opened streams
● No deployment experience

PR #656

https://github.com/quicwg/base-drafts/pull/656

Unidirectional Only in Transport
All streams are unidirectional. Pair two unidirectional streams to create
bidirectional streams. Stream IDs are available on both sides.

Example: Can create a bidirectional stream from 5 on the client side and 5 on
the server side or 5 on the client side and 18 on the server side.

PR #643

https://github.com/quicwg/base-drafts/pull/643

Unidirectional Only in Transport (continued)
Pros:

● Simplifies the transport document
● Simplifies server push
● More generic - applications can choose their own model

Cons:

● Makes the HTTP mapping doc more complex
● Each application that needs request/response mapping will need to create it.
● MAX_STREAM limits can allow sending a request, but not a response.
● No deployment experience

PR #643

https://github.com/quicwg/base-drafts/pull/643

Unidirectional only, plus a means of associating two streams in the transport

Pros:

● More capable than fully unidirectional
● Allows many-to-one

Cons:

● Less general than fully unidirectional
● More complex than unidirectional or bidirectional
● Allows many-to-one
● No deployment experience

Unidirectional plus a binding layer

PR #672

https://github.com/quicwg/base-drafts/pull/672

Points to consider
● Server push is rare: <1% of responses
● Sticking with the current draft is very much an option
● Only plain bidirectional streams have implementation and deployment
● Quartc uses streams in a unidirectional way heavily, so we’ll have useful

implementation experience ‘soon’

Any change now may be premature optimization

https://cs.chromium.org/chromium/src/net/quic/quartc/

