
256 Is Not Enough
IETF 99

256 IS NOT ENOUGH

THE PROBLEM

‣ after 256 outstanding packets, a connection is “full”

‣ With 64-bit CPUs and gigabit home networks, an 8-bit protocol is embarrassing

‣ Clients can open a new connection to get more free IDs…. but…

256 IS NOT ENOUGH

PROBLEMS WITH THE SOLUTION

‣ Low-load systems are fine, and don’t need it.

‣ High load systems may open thousands of network connections

‣ Each connection operates independently of all others

‣ Each connection to a server independently discovers server availability

‣ UDP hits Ethernet packet rate limits before the network is “full”

‣ TCP doesn’t help, because we can’t “fill” a TCP connection

‣ It is generally better to have a few “full” connections than many “empty’ ones

256 IS NOT ENOUGH

REQUIREMENTS FOR A BETTER SOLUTION

‣ No changes to RADIUS packet format

‣ No changes to RADIUS security

‣ No changes to RADIUS data types

‣ No changes to RADIUS attribute format

‣ Use standard data types

‣ Works with all existing transports

‣ Compatible with existing RADIUS

‣ Does not affect proxying

256 IS NOT ENOUGH

COMPATIBILITY

‣ Negotiate via Status-Server (the de-facto solution)

‣ Clients can fall back to normal RADIUS with no negotiation if the server starts
using normal RADIUS

‣ Clients use normal RADIUS until the new capability has been negotiated

‣ low-load systems do not need this specification

‣ As always…

- requires code changes on clients and servers to implement

256 IS NOT ENOUGH

BENEFITS

‣ Low-load systems don’t require changes

‣ High load systems open one connection

‣ Different connection still operate independently of all others

‣ One connection per server to discover server availability, once

‣ UDP still hits Ethernet packet rate limits before the network is “full”

‣ TCP connections get “filled”

‣ Fewer connections, but “full” ones.

‣ Implementations track vectors, not file descriptor

256 IS NOT ENOUGH

NEGOTIATION

‣ Via Status-Server

‣ client -> server

- Can we do this?

‣ server -> client

- ACK, NAK, or radio silence (== NAK)

‣ Clients can still send old-style requests before negotiation has completed!

‣ Servers can immediately send new-style replies to old-style requests

- because servers ALWAYS get old-style requests!

256 IS NOT ENOUGH

THE DETAILS

‣ Servers may use Request Authenticator as a unique ID

- All packets from clients are completely unchanged

‣ Servers echo the Request Authenticator in reply packets

- via the Original-Request-Authenticator attribute

- just like Original-Packet-Code from RFC 7930, Protocol-Error

- No other change to the protocol

‣ both sides need to track packets via the tuple:

- (src / dst IP / port, code, ID, Request Authenticator)

256 IS NOT ENOUGH

WHY THIS WORKS

‣ Request Authenticator is either:

- 16 random octets (Access-Request)

- 16 octet MD5 signature (other packets) … i.e. mostly random octets

‣ The MD5 signature is unique, and “good enough” for an Identifier

- essentially impossible for an attacker to forge

‣ We expect collisions every 2^64 packets or so

- i.e. never, even at giga-packet rates

256 IS NOT ENOUGH

WHY MD5 IS OK

‣ Any change in packet contents will change the MD5 signature

- Event-Timestamp, packet counters, etc.

‣ But MD5 collisions can be created by an attacker!

- Only if they know the shared secret.

- If you don’t trust the trusted people, all bets are off

‣ So if the packets are different, the MD5 hashes are different

‣ If the packets are identical, the MD5 hashes are identical

- Duplicate detection for free, without taking additional steps!

256 IS NOT ENOUGH

COMPARISON TO OTHER PROPOSALS

‣ Multiple source ports

- complex to manage, OS / application overhead

‣ Diameter

- too complicated for a minor upgrade

- very little outside of 3G supports Diameter

‣ Multiple RADIUS packets in one UDP packet

- Bad. Doesn’t solve the ID exhaustion or TCP problem

256 IS NOT ENOUGH

COMPARISON TO OTHER PROPOSALS (2)

‣ Changing the RADIUS packet header

- runs away screaming…

- no, no, just… no. Did I mention “no”

‣ Extended ID?

- Already used in some form by vendor(s)

256 IS NOT ENOUGH

COMPARISON TO EXTENDED ID

✓ Pretty similar to this proposal

✓ Tracking a new 32 or 64-bit Identifier is not hard

- could just be an incrementing counter

✦ If a client misbehaves, the “Extended ID” attribute could be sent to a server
which doesn’t support it… and get proxied upstream

✦Doesn’t get duplicate detection for free

‣ Not a huge difference between the two proposals

256 IS NOT ENOUGH

IMPLEMENTATION

‣ Ongoing in FreeRADIUS v4

- has to wait for some other architectural changes first

- Probably September

‣ Could be implemented in v3

- Extended-ID is ~300 LoC including full negotiation

- This will likely be similar

256 IS NOT ENOUGH

DRAFT

‣ The draft has a detailed explanation of everything

- pros and cons

- what led me to this proposal

- comparisons to other proposals

‣ Describes impact and inter-operability with existing systems

‣ Implementation guidelines and suggestions

256 IS NOT ENOUGH

