
SET Token Delivery Using
HTTP

Marius Scurtrescu, Google
IETF99 Prague

July 2017

Overview
The specification defines:

● how SETs can be delivered to a receiver
○ push initiated by transmitter
○ poll initiated by receiver

● verification process to test an Event Stream

draft-hunt-secevent-delivery-00

Definitions
● Identity Provider

○ explicit: a service provider that issues authentication assertions
○ implicit: service providers that manage personal identifiers used in recovery scenarios by

Relying Parties (i.e. email or phone number)

● Relying Party
○ explicit: a service provider that accepts authentication assertions
○ implicit: service providers that use a personal identifier managed by another provider

● Event Transmitter - a service provider that delivers SETs
● Event Receiver - a service provider that receives SETs
● Event Stream - a defined location and distribution method through which an

Event Transmitter sends message to an Event Receiver

Event Delivery Process
● how SETs are defined and how SETs are assigned to Event Streams is out of

scope
● when a SET is available in an Event Stream, the delivery is determined by the

Event Receiver's registered mechanism:
○ push: HTTP POST to the Event Receiver endpoint
○ poll: the event is queued up in a buffer so the Event Receiver can poll using HTTP POST
○ another method not defined in this specificaiton

● the Event Receiver must acknowledge receipt to the Event Transmitter
● after an acknowledged delivery the Event Transmitter is not required to

maintain SETs

Push Delivery
● The Event Transmitter uses HTTP POST to deliver SETs to a configured

callback URI
● request HTTP Content-Type: application/secevent+jwt
● Accept header: application/json
● a single SET per request
● if the SET is accepted then the response should be 202 (Accepted)
● in case of an error the Event Receiver may respond with an appropriate HTTP

status code

Push Deliver - Request Example
POST /Events HTTP/1.1

Host: notify.examplerp.com
Accept: application/json
Authorization: Bearer h480djs93hd8
Content-Type: application/secevent+jwt
eyJhbGciOiJub25lIn0
.
eyJwdWJsaXNoZXJVcmkiOiJodHRwczovL3NjaW0uZXhhbXBsZS5jb20iLCJmZWV
kVXJpcyI6WyJodHRwczovL2podWIuZXhhbXBsZS5jb20vRmVlZHMvOThkNTI0Nj
b2VAZXhhbXBsZS5jb20ifV0sInBhc3N3b3JkIjoibm90NHUybm8iLCJ1c2VyTmF
tZSI6Impkb2UiLCJpZCI6IjQ0ZjYxNDJkZjk2YmQ2YWI2MWU3NTIxZDkiLCJuYW
1lIjp7ImdpdmVuTmFtZSI6IkpvaG4iLCJmYW1pbHlOYW1lIjoiRG9lIn19fQ
.

Push Deliver - Response Examples
Success:

HTTP/1.1 202 Accepted

Error:

HTTP/1.1 400 Bad Request
Content-Type: application/json

{
 "err":"dup",
 "description":"SET already received. Ignored."
}

Polling Delivery
● Event Receiver uses HTTP POST to both acknowledge SETs and to receive

more SETs
● request & response HTTP Content-Type: application/json
● multiple SETs per response
● request consist of polling parameters, in JSON format

Polling Delivery - Request Attributes
Processing Parameters

● maxEvents - maximum number of SETs that should be returned
○ 0 (zero) means ack only request

● returnImmediately - false (the default) requests a long poll

SET Ack Parameters:

● ack - array of strings, each the "jti" of a successfully received SET
● setErrs - object with "jti" keys and "err"+"description" nested values

Polling Delivery - Response Attributes
● sets - object with "jti" keys and encoded SETs as values
● moreAvailable - boolean indicationg that more SETs are available

Polling Delivery - Variations
1. Poll Only - no previous SETs to acknowledge
2. Acknowledge Only - maxEvents set to 0 and "ack" and/or "setErrs" present
3. Combined Acknowledge and Poll

Polling Delivery - Combined Request Example
POST /Events HTTP/1.1

Host: notify.exampleidp.com
Content-Type: application/json
Authorization: Bearer h480djs93hd8

{
 "ack":["4d59ec67504aaba65d40b0363faad8","3d0c3797584bd193bd0fb1bd4e7d30"],
 "setErrs":{
 "4d3559ec67504aaba65d40b03faad8":{
 "err":"jwtAud",
 "description":"The audience value was incorrect."
 }
 },
 "returnImmediately":false
}

Polling Delivery - Response Example
HTTP/1.1 200 OK
Content-Type: application/json
Location: https://notify.exampleidp/Events

{
 "sets":{
 "4d3559ec67504aaba65d40b0363faad8":
 "eyJhbGciOiJub25lIn0.
 2ZW50OmNyZWF0ZSI6eyJyZWYiOiJodHRwczovL3NjaW0uZXhhbXBsZS5jb20vVXNlcn
 W1lIiwidXNlck5hbWUiLCJwYXNzd29yZCIsImVtYWlscyJdfX19.",
 "3d0c3cf797584bd193bd0fb1bd4e7d30":
 "eyJhbGciOiJub25lIn0.
 eyJqdGkiOiIzZDBjM2NmNzk3NTg0YmQxOTNiZDBmYjFiZDRlN2QzMCIsImlhdCI6MTQ
 L3Bhc3N3b3JkUmVzZXRFeHQiOnsicmVzZXRBdHRlbXB0cyI6NX19fQ."
 }
}

SET Errors 1/2
err description

json Invalid JSON object

jwtParse Invalid or unparsable JWT or JSON structure

jwtHdr An invalid JWT header was detected

jwtCrypto Unable to parse due to unsupported algorithm

jws Signature was not validated

jwe Unable to decrypt JWE encoded data

jwtAud Invalid audience value

jwtIss Issuer not recognized

setType An unexpected Event type was received

SET Errors 2/2
err description

setParse Invalid structure was encountered such as an inability to parse or an
incomplete set of Event claims

setData SET event claims incomplete or invalid

dup A duplicate SET was received and has been ignored

Event Stream Verification
● Event Receiver initiates a request to verify the stream

○ it provides "confirm" and "nonce" values

● Event Transmitter delivers Verify Event

Event Stream Verification - Example Event
{
 "jti": "4d3559ec67504aaba65d40b0363faad8",
 "iat": 1458496404,
 "iss": "https://scim.example.com",
 "exp": 1458497000,
 "aud":[
 "https://event.example.com/Feeds/98d52461fa5bbc879593b7754"
],
 "events": {
 "[[this RFC URL]]#verify":{
 "confirm":"ca2179f4-8936-479a-a76d-5486e2baacd7",
 "nonce":"1668c993e95849869e4b3506cccdf9bf"
 }
 }
}

Authentication and Authorization
SET Delivery depends on TLS and/or standard HTTP authentication and
authorization schemes.

For example:

● TLS Client Authentication
● Bearer Tokens
● Basic Authentication
● SET Payload Authentication

Q & A

