RPKI Deployment: Status, Challenges and the Learning-Validator

Amir Herzberg
Bar Ilan Univ, Fraunhofer SIT, Univ of Connecticut

Joint project with
Yossi Gilad, Tomas Hlavacek, Yafim Kazak, Refi Peretz, Michael Schapira and Haya Shulman,
RPKI Deployment: Agenda

• RPKI in a foil
• ROA adoption: trends
• Wrong ROA: causes and damages
• ROV adoption status, challenges
• Impact of partial ROV adoption
• Improving deployment
 • ROAlert.org
 • The Smart Validator
 • Demo
• Conclusions
RPKI: Resource Public Key Infrastructure

- IETF standard [RFC 6480]; main goal: prevent (sub)prefix hijacks (false origin domain)
- Idea: issue (signed) Route Origin Authorization (ROA):

Prefix: 1.2.0.0/16
Origin: 333
Max-length: 20

- For simplicity, we ignore signing details
- Domains should do Route Origin Validation (ROV):
 - Drop BGP announcements where origin conflicts with ROA
 - I.e.: Origin is not 333 or more specific than /20
ROA Adoption History

Drop BGP announcements → lose (good?) traffic...
So, how many domains do Route Origin Validation?

Announced without ROA: 647,192 (93%)
Valid ROAs: 43,796 (6.3%)
Wrong ROAs: 5,015 (0.7%)

About 10% wrong ROAs!! Consistently!!
Wrong ROAs??

- Requires **both** authorizations (ROAs) and validation (ROV)
- Risk: ROV with **Wrong ROA** ➔ drop legit-yet-invalid announcements
 - Does wrong-ROAs happen? – Typical, real-life example:

Legend:
- Resource Certificate
- Wrong ROA
- Legit-yet-Invalid BGP Announcement

RIPE

Orange (France telecom)
194.2.0.0/15

194.2.0.0/15
Domain 3215

194.2.35.0/24 (Danone)

194.2.0.0/15
Domain 3215 (Danone)

194.2.155.0/24
Domain 8361 (Ubisoft)

194.3.118.0/24
Domain 34444 (Eutelsat)
Measuring Adoption of Route Origin Validation

- Challenge: no direct way to measure the adoption of ROV ➔ no published measurements
- Idea: use Route-View-project’s BGP-collectors – and wrong ROAs!
- Observation: if collector receives invalid announcement ➔ Entire route does not enforce ROV!

1.2.0.0/16

Collectors:

- A
- B
- C
- D
- E
- F

ROA: 1.2.0.0/16
Domain 333

1.2.0.0/16
Route: C-A-1

1.2.0.0/16
Route: F-E-D-2
Measuring Adoption of Route Origin Validation

- Challenge: no direct way to measure the adoption of ROV ➔ no published measurements
- Observation: if collector receives invalid announcement ➔ Entire route does not enforce ROV!

At least 80 of 100 largest domains do not enforce ROV! Can we measure more precisely?
Better ROV Measurements...

• Dependency on existing wrong ROAs may be misleading
• More reliable: **publish** correct/wrong ROAs (same origin)
• Three different controlled experiments, multiple times:
 • Use RouteView Collectors (as before)
 • Use Trace-route to RIPE atlas probes
 • Use `echo` from servers (ICMP ping or TCP SYN/ACK)
• Experiments still ongoing
• Initial results: **only handful of domains** enforce ROV
 • **None** of the 100 largest domains (cf. <20)
• Similar results apparently from measurements by Randy Bush and others (didn’t yet see details)
• What’s the impact of partial-deployment of ROV?
Partial Adoption of ROV: Collateral damage

- Domains **not doing ROV** might cause ROV-enforcing domains to fall victim to prefix hijacking
- **Control-Plane vs. Data-Plane Mismatch:** domain discards invalid announcement, yet data flows to attacker

Domain 2 advertises both valid and invalid routes

Domain 2 uses invalid route for subprefix ➔ traffic to 1.1.1.0/24 still hijacked!

Domain 3 enforces ROV: discards invalid subprefix route

ROA: 1.1.0.0/16 Origin 1
Security in Partial ROV Adoption: Simulation Framework

- Use Internet domain topology of CAIDA
- Pick victim & attacker
- Victim’s prefix has a ROA
- Pick domains doing ROV
- Find domains sending to victim vs. domains sending to attacker

Empirically-derived topology from CAIDA. Includes inferred peering links [Giotsas et al., SIGCOMM’13]
Security with Partial ROV Adoption

• Subprefix-hijack success rate for adoption by x largest domains
• Compare: 100% vs. 25% adoption by other domains
• Significant benefit - but only if almost all large domains adopt – and most other domains adopt too
• We are very far from this!

Subprefix hijack success rate

![Graph showing subprefix hijack success rate against expected deployment for top ISPs. The graph compares two scenarios: 1. ROV adoption prob. 1 and 2. ROV adoption prob. 0.25. The x-axis represents expected deployment, and the y-axis represents success rate. The graph shows a decreasing trend as deployment increases.]
RPKI Deployment: Agenda

- RPKI in a foil
- ROA adoption: trends
- Wrong ROA: causes and damages
- ROV adoption status, challenges
- Impact of partial ROV adoption
- Improving deployment
 - ROAlert.org
 - The Smart Validator
 - Demo
- Conclusions
Fixing ROAs and ROV deployment

- **ROAlert.org**: identifying wrong ROAs
 - Also email alerts when sysadmin-email located: 40% fixed!
 - ➔ Should be deployed `officially`
- **Smart validator** (experiments with Cisco, LinkedIn, .. You??)
 - Manual + Learning mode (identify wrong ROAs)
 - Two conservative modes:
 - **Ignore mode**: ignore wrong ROAs, respect correct ROAs
 - **Auto-Extend mode**: add `virtual` ROAs (to correct `wrong`)
 - **ROV++**: reduce collateral-damage; gives incentive to deploy
 - **Path-end validation**: easy, strong extension to RPKI
 - See SigComm16 paper – or ask me 😊
Learning based on time:

Possible Hijacks duration [Days] from 08-2016 -> 06-2017

- **1 Day**: 60.90%
- **1 Week**: 8.84%
- **2 Weeks**: 28.46%
- **3 Weeks**: 0.56%
- **4 Weeks**: 0.38%
- **1-2 months**: 0.44%
- **2 months+**: 0.42%
Architecture

Data warehouse

Dashboard

Data resources

The engine
Smart Validator Dashboard Examples

Manual+Learning mode

Auto-Extend mode

![Conflicted ROAs dashboard](image)

- Conflicted ROAs: Currently 16.68% ROAs are in conflict
- BGP’s Announcements Status: Valid 36045, Invalid 54805, Unknown 679645
- Roa Issues Status: Valid ASN, Invalid length, Loose Roa

![Conflicted ROAs dashboard](image)

- Conflicted ROAs: Currently 2.9% ROAs are in conflict
- BGP’s Announcements Status: Valid 123754, Invalid 1832, Unknown 481643
- Roa Issues Status: Valid ASN, Invalid length, Loose Roa
Beyond BGP: Routing Against DoS

• BGP is limited to single fixed route
 • Easier to congest – e.g., in Denial-of-Service (DoS)
• BGP isn’t congestion-sensitive
 • Route does not depend on congestion, delays, loss
 • Slow response to link failure
• IP provides only best-effort service
 • No quality guarantees (max delay, max loss rate)
 • Quality-of-Service (QoS) extensions: only within domain
• Secure Accountable Inter-domain Forwarding
 • On going project – talk to me...
Conclusions

- Routing security: fun & important research area
- RPKI improves BGP’s security... **if** deployed widely
 - ROAlert and Improved validator (ROV++)
- BGPsec deployment... unlikely ?
 - Path-End instead? Effective – and deployable!
More questions?
Thanks!

42