Authorizing network access for IoT devices

Mohit Sethi
Tuomas Aura
Outline

• Authorizing local network and Internet access for IoT devices

• Cloud-managed network-access authorization

• Bootstrapping security between device and cloud

• EAP-NOOB
Authorizing network access for IoT devices

- New off-the-shelf devices need Internet access
 - for vendor and third-party services in the cloud
 - for software update
Authorizing network access for IoT devices

Two problems:

• **Discovery and configuration**: which network?
 • For example, need to find the right SSID and cloud server

• **Security bootstrapping**: identifiers and credentials?
 • For connecting to the network
 • For connecting to the cloud
Authorizing network access for IoT devices

Challenges:

• Limited user interface
• Scalability
• At home, small office, enterprise or industrial environment
 • Clueless users vs. professional admins and support
 • On the other hand, same devices everywhere
• Wi-Fi (WPA-Personal and WPA Enterprise), Zigbee, BTLE
Authorizing network access for IoT devices

Current Solutions for network access authorization:

• Manual configuration and key distribution
 • Pairing with smart phone over Bluetooth
 • Wifi (Un)Protected Setup (WPS)

• Managed solutions
 • RADIUS / DIAMETER / 802.1x
 • Vendor and enterprise certificates
Cloud-managed network access authorization

- **Delegating** network access authorization and isolation **decisions to a remote cloud-based service**
 - Device vendors or third parties
Cloud-managed solutions

Some open questions:

- RADIUS implementations are quite limited
 - Can’t expect users to understand and configure RADIUS

- Limiting the power of delegates in my LAN?
- Interoperation of multiple delegates in my LAN?
- Isolating devices within my LAN
- Monitoring the behavior of my devices
- Multi-homed, mobile and multi-owner devices
EAP-NOOB
draft-aura-eap-noob
https://github.com/tuomauraur/eap-noob

Tuomas Aura
Mohit Sethi
EAP-NOOB

• Nimble out-out-of-band authentication for EAP

What is special?

• No pre-existing credentials or association needed
• User-assisted OOB authentication associates peer device to authentication server

What is it good for?

• Secure bootstrapping of cloud-connected smart appliances
• Newly unboxed devices have no credentials or owner
EAP-NOOB user experience example

1. User connects to network
2. Network prompts for login
3. User scans QR code
4. QR code contains AAA/cloud account login
5. User is redirected to AAA/cloud account login
6. User logs in to network
EAP-NOOB

• Device registration to cloud and user account + network access authorized – in one step
• Single user-assisted out-of-band message between peer device and AAA server

How is this possible?
Scenario: cloud-connected IoT appliance

Remote AAA (in cloud) Local AAA Wireless AP IoT appliances

Trust Scan
Scenario: cloud-connected IoT appliance

Remote AAA (in cloud) → Trust → Local AAA → Wireless AP → Scan → IoT appliances

- EAP in-band
- RADIUS routing @eap-noob.net
- Web page / API
- OOB Output / Input
- User-assisted OOB channel
- EAP-noob.net

RADIUS

User-assisted OOB channel
EAP-NOOB

• Device registration to cloud and user account + network access authorized – in one step
• Single user-assisted out-of-band message between peer device and AAA server

How is this possible?

• In-band communication through EAP tunnel before network access is authorized
• User has an account in the cloud-based AAA server and has secure access, e.g. HTTPS
• Access network trusts the AAA server
EAP-NOOB in the background

1. EAP-NOOB initial exchange: ECDH in-band

2. OOB message: secret + hash

3. EAP-NOOB completion: authentication and key confirmation in-band

AAA/cloud account login
EAP-NOOB security

• ECDH key exchange in-band + authentication out-of-band

• OOB message in only one direction: peer to server or server to peer

• OOB channels must protect confidentiality or integrity (both not needed)

• Additionally, user checks that registration was successful or, if it was not, resets the peer device
EAP-NOOB details

- OOB channels: *dynamic* QR code, *dynamic* NFC NDEF message, audio cable
- Association becomes persistent until reset by user. Rekeying happens without user interaction
- Potential providers of cloud-based service: device vendor, ISP, content provider, third-party
- Mainly for *device-cloud* association. Ok for *device-device* pairing, but not necessarily optimal
- Roaming (e.g. in eduroam) possible after first association at home network
EAP-NOOB lessons

• Security bootstrapping = device registration, taking ownership
• Device names and identifiers often not available and cannot be trusted. Physical access identifies the device
 • Vendor certificates can prove device model and capabilities
• Avoid rerun of user-assisted step at all cost
 • After a few times, average user just won’t bother
 • Sending engineer on-site is expensive and does not scale
 • Protocol must recover from accidental and malicious failures
• Timeout, retry and back-off intervals difficult to decide when human user is part of the protocol
• Algorithm agility is harder with no permanently secure master keys
• EAP is useful also in home networks
Next challenges

So, a third-party AAA server authorizes off-the-shelf devices to use my access network!

- Monitoring device behavior in access network
- Situational awareness for access network owner
- Isolation of devices from the access network (e.g. guest VLAN) and from each other
- Authorized access to services and other devices in the access network
- Limiting the power of the cloud-based third-party AAA server
- Multiple co-existing third-party AAA servers