
DTLS 1.3

draft-ietf-tls-dtls13-01

Eric Rescorla Hannes Tschofenig Nagendra Modadugu

Mozilla ARM Google

IETF 99 TLS 1



Reminder: ACKs

• DTLS historically used an implicit ACK

– Receiving the start of the next flight means the flight was

received

• Simple (but also simpleminded)

– Slightly tricky to implement

– Gives limited congestion feedback

– Handles single-packet loss badly

• Interacts badly with some TLS 1.3 features (like NST)

• Solution: introduce an explicit ACK

IETF 99 TLS 2



Current proposal: SACK

• ACKs contain the sequence numbers of received records

– From the current flight only

– Senders need to maintain a map from records to handshake

messages

– Senders SHOULD NOT retransmit ACKed data and MUST

NOT retransmit ACKed flights

• Separate record type, not a handshake record

– MUST be sent with epoch >= than what’s being ACKed

– Sent with the current sending key

• Receiving the next flight is an implicit ACK

IETF 99 TLS 3



When should receivers ACK

• When receiving messages that don’t have in-handshake responses

• When it looks like messages might have gotten lost

– When you get an out-of-order record

– When you get a partial record and don’t get the rest

“immediately”

• Not for non-handshake messages

IETF 99 TLS 4



Reduced Headers

• What can we remove?

– Nonce

– Content type and version (hopefully)

• Proposal (thanks to MT):

struct {

uint16 epoch_sequence // format = 001eesss ssssssss

uint16 length;

opaque encrypted_record[length];

} DtlsHeader;

IETF 99 TLS 5



Connection IDs

• Lack of Connection IDs clearly a problem for NATs/IoT, etc.

• Connection IDs are also a clear privacy problem

– Lots of proposals for how to do privacy preserving Conn IDs

– ... but they’re complicated and none of them seem totally

baked

– This seems like less of a privacy problem than with browsers

(QUIC)

• Proposal: use a fixed connection ID for now

– In an extension

– We can always replace it later

IETF 99 TLS 6



Concrete proposal

struct {

opaque connection_id<0..255>;

} ConnectionId;

struct {

uint16 epoch_sequence // format = 001eesss ssssssss

opaque connection_id[connection_id_length];

uint16 length;

opaque encrypted_record[length];

} DtlsHeader;

• IDs are used if client offers and server answers

– On all (non-0RTT)? encrypted records

• Each side sends with the other’s ID

– Because IDs are unframed, 0-length IDs are just omitted

IETF 99 TLS 7



Other issues?

IETF 99 TLS 8


