
Token Binding in TLS 1.3
Nick Harper
IETF 99

1

Token Binding for 1-RTT TLS 1.3

TBNEGO is limited to TLS 1.2 and earlier, but changes to support TLS 1.3 are
minimal. Proposed changes for a new draft:

● Server puts token_binding extension in EncryptedExtensions
● Define signed value in terms of TLS 1.3 section 7.5 (Exporters) instead of

RFC 5705
● Define an interaction with 0-RTT that a server MUST NOT negotiate

token_binding and early_data on the same connection (unless updated by
another draft)

2

draft-ietf-tokbind-tls13-0rtt:
Changes in -02 from -01

● Use one exporter value for entire connection*
● Restrict to using PSKs issued from NewSessionTicket and used with

(EC)DHE key exchange mode
● Added new TLS extension to negotiate and indicate use of 0-RTT TB
● Removed replay indication TLS extension

*Needs further discussion

3

0-RTT TB negotiation: initial handshake

ClientHello
+ token_binding
+ psk_key_exchange_modes
+ key_share -------->
 ServerHello
 {EncryptedExtensions}
 +token_binding
 {Certificate}
 {CertificateVerify}
 {Finished}
{Finished} -------->
 <-------- [NewSessionTicket]
 +early_data
 +early_token_binding
[Application Data] <-------> [Application Data]

4

0-RTT or TB negotiation (client does not support 0-RTT TB)

ClientHello
+ early_data
+ token_binding
+ key_share
+ psk_key_exchange_modes
+ pre_shared_key
(Application Data*) -------->
 ServerHello
 + pre_shared_key
 + key_share*
 {EncryptedExtensions}
 +token_binding
 {Finished}
 <-------- [Application Data*]
{Finished} -------->
[Application Data] <-------> [Application Data]

5

0-RTT TB negotiation: resumption handshake (early data accepted)

ClientHello
+ early_data
+ early_token_binding
+ token_binding
+ key_share
+ psk_key_exchange_modes
+ pre_shared_key
(Application Data*) -------->
 ServerHello
 + pre_shared_key
 + key_share*
 {EncryptedExtensions}
 +early_data
 +early_token_binding
 +token_binding
 {Finished}
 <-------- [Application Data*]
{Finished} -------->
[Application Data] <-------> [Application Data]

6

Switching Exporters: Background

7

Current design (no switching exporters) is convenient for HTTP

Other application protocols might send a message in early data without any
tokens, and want to send bound tokens after TLS handshake

Do we need application profiles on how to use protocols with 0-RTT TB?

Switching Exporters: Options

● Always use early exporter: security roughly equivalent to client certs used
with resumption

● Require normal exporter used for all TokenBindingMessage structs sent
after handshake completes: security is as close to TBPROTO as possible

● Some sort of middle ground
○ Previously suggested: client switches ASAP; server has no way of enforcing switch
○ Another option: client SHOULD switch post handshake; server soft fails (e.g. sends 4NN

Too Early HTTP status code) if wrong exporter used
○ Other options?

8

