FECFRAME – extension
Adding sliding window codes support to FECFRAME

Vincent Roca, Inria, France
Ali Begen, Networked Media, Turkey

July 2017, IETF99, Prague
Note well for FECFRAME-ext + RLC I-Ds

- we, authors, didn’t try to patent any of the material included in this presentation/I-D
- we, authors, are not reasonably aware of patents on the subject that may be applied for by our employer
- if you believe some aspects may infringe IPR you are aware of, then fill in an IPR disclosure and please, let us know
Main changes since IETF’98

● now a WG-Item document
 ○ file name does not refer to a new protocol version any more

● references to “convolutional codes” have been replaced by “sliding window codes”
 ○ “convolutional” is too much associated to PHY layer codes
 ○ “sliding window” illustrates well the code behavior

● filled “Section 3. Architecture Overview”
 ○ introduces FECFRAME architecture, terminology, and key concepts
 ○ goal is to help a newcomer to understand FECFRAME
Sliding Window Random Linear Codes (RLC) FEC Scheme

...for FECFRAME - extended

Vincent Roca, Inria, France

July 2017, IETF99, Prague
Main changes since IETF’98

- now a WG-Item document

Private feedbacks from Marie-José Montpetit triggered some of the following updates (thanks)

- references to “convolutional codes” have been replaced by “sliding window codes”
 - same reasons

- kept the RLC acronym but changed the expanded name to add “sliding window”
Main changes since IETF’98 (2)

- support multiple repair symbols per FEC Repair Pkt
 - the main technical change
 - useful when the symbol size E is small compared to the PMTU
 - avoids extra overhead (uses a single RLC IP/UDP/RLC header)
 - # repair symbols determined by comparing UDP payload length and symbol size (E)

<table>
<thead>
<tr>
<th>Repair_Key</th>
<th>NSS (# source symbols in ew)</th>
<th>FSS_ESI</th>
</tr>
</thead>
</table>

First repair symbol (E bytes)

Second repair symbol (E bytes)

Third repair symbol (E bytes)

repair_key applies to 1st repair symbol
value+1 for 2nd repair symbol
value+2 for 3rd repair symbol

shared by all repair symbols
Main changes since IETF’98 (3)

- filled Section 5. “FEC Code Specification”
 - describes encoding and decoding operations
 - sections 3, 4 and 5 are sufficient to have interoperable implementations of this FEC Scheme 😊

- detailed sections 7 “Security Considerations” and 8 “Operations and Management Considerations”
Next steps for both I-Ds

- **FECFRAME-extension**: almost done
 - proof-reading

- **Sliding Window RLC**: a few things…
 - proof-reading
 - open question: adding support of sparse versions of RLC?
 - to date we only considers high-density encoding vectors…
 - … what about adding support to sparse matrices for larger encoding windows as a compromise between correction performance and complexity?

\[
\text{repair}_1 = \alpha_1 \ast \text{src}_1 + \alpha_2 \ast \text{src}_2 + \alpha_3 \ast \text{src}_3 + \alpha_4 \ast \text{src}_4 + \alpha_5 \ast \text{src}_5 + \alpha_6 \ast \text{src}_6
\]

density 1

\[
\text{repair}_1 = \alpha_1 \ast \text{src}_1 + 0 + 0 + \alpha_4 \ast \text{src}_4 + \alpha_5 \ast \text{src}_5 + 0
\]

density 1/2