
NetApp

RFC3530bis Home
Stretch

Thomas Haynes

1Friday, February 18, 2011

© 2011 NetApp. All rights reserved.

Home stretch

Task List
– 54 items
16 items remain
+2 to be discussed later

– https://github.com/loghyr/3530bis/blob/master/tasklist.txt

Do we need a review of draft after all edits?

2
2Friday, February 18, 2011

https://github.com/loghyr/3530bis/blob/master/tasklist.txt
https://github.com/loghyr/3530bis/blob/master/tasklist.txt

© 2011 NetApp. All rights reserved.

Walk through the task list

Is it an issue we want to fix?
– Can we describe the issue?
– How do different implementations resolve it?

3
3Friday, February 18, 2011

© 2011 NetApp. All rights reserved.

Item #4

What are "courtesy locks"?
What are implementations doing?
What do we want to do?

4
4Friday, February 18, 2011

© 2011 NetApp. All rights reserved.

Item #9

9) We should clarify the passage on
NFS4ERR_LOCKS_HELD. Since lock owners and
open owners are different things, we need to
clarify which locks may trigger an
NFS4ERR_LOCKS_HELD error on a CLOSE for a
given open_stateid. In the same vein, which locks
does section 9.8 allow the server to free when the
client does a CLOSE?

This all harks back to the mailing list discussions
about lock_stateids being <per-file,per-
open_owner,per-lock_owner> vs. just being <per-
file,per-lock_owner>

Add DOWNGRADE here?? Dave
5

5Friday, February 18, 2011

© 2011 NetApp. All rights reserved.

Item #2 (subset of 9?)

Explain what associated means in this context:
In sec. 14.2.2 DESCRIPTION
The share reservations and other state information

released at the server as a result of this CLOSE is
only associated with the supplied stateid.

6
6Friday, February 18, 2011

© 2011 NetApp. All rights reserved.

Item #10

Recommendations/workarounds for dealing with
the OPEN and CB_RECALL race.
– How are different implementations handling it?

7
7Friday, February 18, 2011

© 2011 NetApp. All rights reserved.

Item #43

How to interpret empty path components in
fs_locations/fs_locations_info

8
8Friday, February 18, 2011

© 2011 NetApp. All rights reserved.

Item #11

Clarify the use of the delegation vs lock vs open
stateid in SETATTR.

Item #12
– Clarify the various scenarios that should result in a

delegation recall (mainly SETATTR by self).

9
9Friday, February 18, 2011

© 2011 NetApp. All rights reserved.

Item #17

Description of Third Edge Condition

10

The third edge condition needs to be described. Basically,
this is the situation in which a client thinks he has
locks because he rebooted in the middle of reclaim without
reclaiming those locks. If the client comes back and
those locks were taken by another client and then
released before that final reboot, the client could
reclaim the locks unaware that it had lost them in
the interim and could not be guaranteed to continuous
holding of the locks.

10Friday, February 18, 2011

© 2011 NetApp. All rights reserved.

Item #20

Explanatory Text on Stateid Contradicts Self and
Rest of Protocol

11
11Friday, February 18, 2011

© 2011 NetApp. All rights reserved.

Item #27

Setattr for a Write Delegated File Should be Done
with theDelegation Stateid

 If a client holding a write delegation does a setattr for that file for something
other than set size and chooses to use a special stateid to do the setattr, the
delegation can be recalled by the server. This is because there is no way for the
server to know that the setattr is coming from the client which is holding the
delegation, unless it looks at the clientid to figure this out. It would be better if the
client sends any such setattrs with the delegation stateid so that the server can
avoid recalling the delegation for such requests.

 Pretty straightforward - accept as is?

12
12Friday, February 18, 2011

© 2011 NetApp. All rights reserved.

Item #28

Reclaiming Local Opens with
CLAIM_DELEGATE_CUR Instead of
CLAIM_PREVIOUS

13

If a client holds some local open/lock state while holding a
delegation for that file and the server reboots, the client can
reclaim this state by sending open requests with the claim_type set
to CLAIM_PREVIOUS. However there is no way to differentiate between
the reclaim for a regular open and that of a DELEGATE_CUR open. The
server can figure out that the open being reclaimed is a DELEGATE_CUR
open by comparing the clientid for that open with the client holding
the delegation in order to avoid recalling the delegation but it
would be better if the client either does not reclaim this open
(since it already has the delegation) or reclaim this by setting
the claim_type to CLAIM_DELEGATE_CUR so that the server can allow
this open to succeed just like a normal CLAIM_DELEGATE_CUR open.

13Friday, February 18, 2011

© 2011 NetApp. All rights reserved.

Item #35

OPEN_DOWNGRADE and posix byte range

14
14Friday, February 18, 2011

© 2011 NetApp. All rights reserved.

Item #13

Perhaps clarify how clients should be managing
delegations? There appear to be server
implementations that expect clients to limit the
number of delegations they are holding.

Notes: Clients need to implement mechanism to
limit number of held delegations.

15
15Friday, February 18, 2011

