Models for
adaptive-streaming-aware CDNI

Introduction

draft-brandenburg-cdni-has-02, section 1 & 2

CDNI Extended Design Team Meeting
Virtual Meeting
June 28, 2012

Ray van Brandenburg (ray.vanbrandenburg@tno.nl)

Why this draft?

* Although CDNI should be content-agnostic, HAS content
poses some unique challenges
— Very large number of (possibly distributed) files
— Session-less nature makes logging difficult
— Manifest file poses problems for Request Routing
— Etc...

e This draft...

— Is meant to spur discussion on HAS and CDNI

— Introduces terminology

— Discusses some of the problem areas when combing HAS and CDNI
— Introduces different options for level of HAS awareness in CDNI

— Allows WG to make well-informed decision on which models to
support

Differences since -02

Incorporates many comments and clarifications received
during previous conference calls

— Unigue aspects of Live HAS content and dynamic content (e.g. ad
insertion)

— HTTP vs. DNS and effect on HAS optimizations
— New URL signing section

— New logging options

— Request Routing options clarified

— Etc...

Provides recommendations
— Last version only provided options

— This version includes authors’ recommendation on which options
to go for

Models for
adaptive-streaming-aware CDNI

File Management and Content Collections

draft-brandenburg-cdni-has-02, section 3.1

CDNI Extended Desigh Team Meeting
Virtual Meeting
June 28, 2012

Ray van Brandenburg (ray.vanbrandenburg@tno.nl)

Three candidate approaches for dealing with File
Management of HAS content

Option 1.1: No HAS awareness
— ‘Do Nothing’-approach
— dCDN is unaware of relationship between chunks, forced to store chunks as individual files.

Option 1.2: Allow single file storage of fragmented content
— Full ‘HAS-awareness’
— CDNI Metadata Interface signals type of HAS, name of manifest, etc.
— Allows dCDN to store fragmented content as single file

Option 1.3: Access correlation hint
— Add ‘Access Correlation Hint’ to CDNI Metadata of all chunks belonging to same content collection

— Can be used by dCDN to know which files are likely to be requested after each other in small time
window

Recommendation:

— Ininitial version of CDNI Interfaces go for Option 1.1
— Option 1.2 can be considered for re-chartering after initial solution is completed

Models for
adaptive-streaming-aware CDNI

Content Acquisition and Content Collections

draft-brandenburg-cdni-has-02, section 3.2

CDNI Extended Desigh Team Meeting
Virtual Meeting
June 28, 2012

Ray van Brandenburg (ray.vanbrandenburg@tno.nl)

Two candidate approaches for dealing with Content
Acquisition of HAS content

* Option 2.1: No HAS awareness
— ‘Do Nothing’-approach
— dCDN is unaware of relationship between chunks, forced to acquire chunks as individual files

— Increased overhead

 Option 2.2: Allow single file acquisition of fragmented content

— Full ‘HAS-awareness’
— CDNI Metadata Interface signals type of HAS, name of manifest, etc.
— Allows dCDN to acquire fragmented content as single file

* Recommendation:
— Ininitial version of CDNI Interfaces go for Option 2.1

— Option 2.1 can be considered for re-chartering after initial solution is completed

Models for
adaptive-streaming-aware CDNI

Request Routing and Manifest Files
draft-brandenburg-cdni-has-02, section 3.3

CDNI Extended Design Team Meeting
Virtual Meeting
June 28, 2012

Ray van Brandenburg (ray.vanbrandenburg@tno.nl)

Request Routing and Manifest Files — Recap

In a sense, Manifest Files can be considered a form of request routing

Recap, three methods for addressing chunks in a manifest
— Relative URL (e.g. ‘segments/segl.ts’)
— Absolute URL with Redirection (e.g. ‘http://req_routing.cdn......")
— Absolute URL without Redirection (e.g. ‘http://surrogate2.cdn....’)

Some CDNs might prefer one method above the other
— Some CDNs/CPs might NEED one method (e.g. for security, anti-deeplinking, etc.)
— [Note: Should this be part of capability exchange?]

In some cases Content Provider might decide on type of URL used (e.g. in the case where the
Content Provider delivers the manifest)

In some cases delivery of manifest file might be done by Content Provider (invisible to CDN)

Special attention needs to be had for ‘Live’ manifest files and manifest files containing
additional content which might be delivered by other CDN (ad-insertion)

Three candidate approaches for dealing with manifest
files and Request Routing

* Option 3.1: No HAS awareness
— ‘Do Nothing’-approach

— Absolute URLs with Redirection can cause very significant overhead (one full CDNI redirection
process for every chunk)

— Relative URLs support is brittle since dCDN surrogate might not be able to infer that delivery is on
behalf of uCDN

— Absolute URLs without redirection not supported

* Option 3.2: Manifest File rewriting by uCDN
— Allow uCDN to rewrite manifest file (e.g. change URLs to point to dCDN Request Router)

— Does not require changes to CDNI Interfaces. Uses existing CDNI RR Interface for obtaining location
of dCDN RR (or surrogate)

— Transparent to dCDN (no HAS awareness required)
— Can be optional feature (not mandatory for uCDNs)

* Option 3.3: Two-step Manifest File rewriting
— Also allow dCDN to rewrite manifest file
— Requires full ‘HAS-awareness’ on behalf of dCDN
— Requires changes to CDNI interfaces

Three candidate approaches for dealing with manifest
files and Request Routing - 2

Option 3.1: No HAS awareness
— ‘Do Nothing’-approach

- (=)

Option 3.2: Manifest File rewriting by uCDN
— Allow uCDN to rewrite manifest file (e.g. change URLs to point to dCDN Request Router)

~ ()

Option 3.3: Two-step Manifest File rewriting

— Also allow dCDN to rewrite manifest file

~ ()

Recommendation:
— Mandatory support for Option 3.1
— Allow Option 3.2 for uCDN that support this
— Do not support Option 3.3, but mark as candidate for possible re-chartering in the future

