
http://6lowapp.net core interim, 2012-05-16 1

Constrained RESTful Environments
WG (core)

Chairs:
 Cullen Jennings <fluffy@cisco.com>
 Carsten Bormann <cabo@tzi.org>
Mailing List:
 core@ietf.org
Jabber:
 core@jabber.ietf.org

mailto:fluffy@cisco.com
mailto:fluffy@cisco.com

http://6lowapp.net core interim, 2012-05-16 2

� We assume people have read the drafts

� Meetings serve to advance difficult issues by making
good use of face-to-face communications

� Be aware of the IPR principles, according to RFC 3979
and its updates

üBlue sheets
üScribe(s)

http://6lowapp.net core interim, 2012-05-16 3

interim 2012-05-16: core WG Agenda
(all times are UTC)

14:30 Introduction, Agenda, Status Chairs (10)
14:40 Tickets for -observe KH (49)
15:29 Tickets for -coap ZS (59)
16:28 Tickets for -block CB (9)
16:37 Non-ticket discussion all (38)
17:15 planning, wrap-up Chairs (15)
17:30 retire for the day

http://6lowapp.net core interim, 2012-05-16

-observe 14:40–15:29
� -- check defined resolution and go ahead (2 min)

� #225 Explain why it is not always possible to react to a RST that is in reply to a NON (editorial minor)

� -- discuss (40 min)

� #204 Introduce a minimal version of Pledge (protocol enhancement major)
� #217 how fast must the observe clock be able to go? (protocol enhancement major)
� #220 Should observe support time series data? (protocol enhancement minor)
� #227 Make aborting the previous transaction optional (protocol enhancement minor)

� -- tickets with a clear way forward (optional) (7 min)

� #219 Clarify that observe is about eventual consistency (editorial minor)
� #221 Occasionally sending CON is not just a security consideration (protocol defect minor)
� #223 Fix reordering detection condition description (editorial minor)
� #234 Editorial updates to -observe examples (editorial minor)
� #235 Avoid extending the base standard retransmission rules (other technical minor)
� #236 Clarify the semantics of the "obs" link target attribute (other technical minor)
� #237 Multicast -> reference groupcomm draft (editorial minor)

� -- tickets that need more work on the mailing list

� (none)

4

Observing Resources in CoAP

draft-ietf-core-observe

CoRE WG Virtual Interim | 2012/05/12 | Klaus Hartke

2

Ticket #225
Explain why it is not always possible to react
to a RST that is in reply to a NON

Section 4.2 says: If the client rejects a non-con!rmable noti!cation
with a RST message, the server MAY remove the client from the list
of observers.

Cullen Jennings thinks this needs to be a MUST.

This is indeed intended to be MAY. We want to make the need to
store state for a NON optional. A sender of a NON message may
discard the MID state for that message whenever it wants. That may
make acting on a RST to that MID impossible. Hence MAY.

Text proposal:

Implementation note: This “MAY” is a relaxation for constrained
implementations. The expectation is, where a server still has the state
available that is needed to map the RST to an observation relationship,
it will indeed remove the client from the list of observers.

Check: Is this what we want to do?

3

Ticket #204
Introduce a minimal version of Pledge

Various proposals have been made to solve the robust observation
relationships problem (#174). #174 was closed, but there is still work
to do:

• #174 was closed because the “80 %” were solved and a solution for
the “20 %” had not yet come up. We should review the text to make
sure the way Max-Age is used now can be made into a default
behavior for potential future options (e.g., Pledge).

• Cullen Jennings notes that using Max-Age to indicate when server
will send next noti!cation is just wrong. That’s not what Max-Age
means. We need separate control of how long data is fresh, and
how often the client needs to refresh the subscription.

Next slides: Separate concepts for controlling how long data is fresh
and determining how long a client is interested in a resource.

4

Background

1. A resource has a state.
The state can change over time

2. The representation of a resource state is an
accurate description of the current state of
the resource until the resource changes its
state

3. When the state changes, the server sends a
noti!cation to each client interested in the
resource
(We cannot send more noti!cations than the network/
client can handle though ମ eventual consistency)

4. Each noti!cation contains a representation
of the new resource state

Theory

5. The representation contained in a
noti!cation is fresh until the next
noti!cation arrives

Resource State
Problem

6. A server may go away or erroneously come
to the conclusion that a client is no longer
interested in the resource

Solution: Soft-state

7. The representation will expire unless it is
refreshed.

Implementation

8. Each noti!cation contains an indication
of when the server will send the next
noti!cation at latest

9. This enables the client to determine if
the next noti!cation should have arrived,
but also requires the server to send a
noti!cation even when the resource state
did not change

10. There’s a trade-o" between detecting
failure sooner and sending less unneeded
messages

5

Background

1. A client has an interest in a resource.
The interest can change over time

2. A server sends noti!cations only
to clients that are interested

Theory

3. When a client becomes interested or stops
being interested in a resource,
it sends a message to the server

Problem

4. A client may go away without saying that is
no longer interested

Interest
Solution: Soft-state

5. The client’s interest in a resource
will expire unless it is refreshed.

Implementation

6. A con!rmable noti!cation asks the client to
con!rm its interest in the resource

7. If the client con!rms the noti!cation, the
client’s interest in the resource is assumed
until the next con!rmable noti!cation

8. This enables the server to determine if the
client is still there, but also requires the
client to send a message even when its
interest in the resource did not change

9. There’s a trade-o" between detecting
failure sooner and sending fewer
unneeded messages

6

Carsten CullenZach

Hi Cullen! Where’s the dinner? And can you please call
me if the location changes?

The dinner is at the IETF hotel. I will call you if the
location changes. I will also call you at latest in 30
minutes, even if the location has not changed. If you
haven’t heard from me by then, then I’ve forgot you.
In that case, please call me again. OK?

OK. Thank you!

Hi Carsten! Where’s the dinner?

Cullen said, the dinner is at the IETF hotel. That was
15 minutes ago. Ask me in 10 minutes again, maybe
I know more by then.

The location has changed. The dinner is now at the
Italian restaurant. I will call you if the location chang-
es again. I will also call you at latest in 30 minutes,
even if the location has not changed. If you haven’t
heard from me by then, then I’ve forgot you. In that
case, please call me again. OK?

OK. Thank you!

Hi Carsten! Where’s the dinner?

Cullen called and said, the dinner is now at the Ital-
ian restaurant. That was 2 minutes ago. Ask me in 10
minutes again, maybe I know more by then.

7

Ticket #217
How fast must the observe clock be able to go?

Section 4.4 mandates that a sequence number must not be reused
within 216 seconds. Since there are 216 possible values,
this means that a client cannot be noti!ed more than once per
second on average.

Cullen Jennings notes that many applications may want way faster
updates than this.

The current requirement is very conservative, re"ecting a very
simple implementation strategy. We could come up with alternative,
more elaborate requirements that enable faster updates.

How fast is fast enough?

How much are we willing to assume about reordering and
delivery probabilities/distributions?

Should we separate timestamp and sequence number?

8

Ticket #220
Should observe support time series data?

Observe currently is about eventual consistency.

Jeroen Hoebeke notes that it may be useful to enable a server to
inform a client reliably about every state change of a resource.

What kinds of mechanisms would we need to add
to support time series data?

Is the resulting set of changes a desirable addition?

9

Ticket #227
Make aborting the previous transaction optional

Section 4.5 requires a server implementation to stop an old
transmission and carry the retransmit count over to the new
transaction.

Cullen Jennings notes that this may be hard to implement in some
cases and a minor optimization for an edge case.

He proposes that a server implementation can choose if it wants to
abort the previous transaction or run two transactions in parallel.

• If it aborts the previous transaction, then it needs to copy over the
retransmit state to the new transaction.

• If it doesn't cancel the old transaction, the device still !nds out the
device is gone.

Who has implemented this MUST? What was your experience?

If not, would this MUST be hard to implement in your structure?

10

Other Tickets

#219 Clarify that observe is about eventual
consistency

#221 Occasionally sending CON is not just a security
consideration

#223 Fix reordering detection condition description
#234 Editorial updates to -observe examples
#235 Avoid extending the base standard

retransmission rules
#236 Clarify the semantics of the “obs” link target

attribute
#237 Multicast — reference the groupcomm draft

http://6lowapp.net core interim, 2012-05-16

-coap 15:29–16:28
� -- check defined resolution and go ahead (22 min)

� #202 Remove the 270 byte artificial limit (protocol defect minor)
� #213 Path/Query options minimum length (protocol defect minor)
� #214 Adopt vendor-defined option into core-coap (protocol enhancement minor)
� #218 Mostly obvious section 5.10.8 fixes (other technical minor)
� #222 RawPublicKey identifier (protocol enhancement minor)
� #228 Proxying of multicast requests (protocol enhancement minor)
� #229 Move sections 10-10.2. out of the "Security Considerations" (editorial minor)
� #232 Clarify inclusion of Location options in a 2.01 (Created) response (editorial minor)
� #233 Response codes with payload inconsistency (editorial trivial
� #239 Always reserve option delta 15 (other technical minor)

� -- discuss (30 min)

� #201 Clarify use of retransmission window for duplicate detection (editorial minor)
� #215 editorial issues around Congestion Control (editorial major)
� #230 Multiple Location options need to be processed as a unit (protocol defect minor)

� -- tickets with a clear way forward (optional) (5 min)

� #207 Add advice on default values for critical options (editorial minor)
� #212 Option numbers 14, 28, 42, ... reserved but usable (editorial minor)
� #224 Clarify the concept of end-point (editorial major)
� #216 IANA: get Multicast addresses (other technical major)
� #226 Clarify which language addresses intermediaries in general vs. forward proxies specifically (other technical major)

15

http://6lowapp.net core interim, 2012-05-16

-block 16:28–16:37
� -- check defined resolution and go ahead (6)

� #203 Restrict the potential combinations of Block1 and Block2 (protocol defect major)
� #210 Disentangle Block and Token (protocol defect major)
� #211 Signal provisional responses (atomic Block1) in the response code (protocol

defect major)

� -- discuss (0)

� -- tickets with a clear way forward (optional) (3)

� #206 Clarify that atomic Block1 transfers match per token *and* endpoint (editorial
major)

� #205 Clarify that Size does not modify the request semantics beyond adding the size
information (editorial minor)

� #209 Add potential attacks to security considerations (editorial minor)

� -- tickets that need more work on the mailing list

16

http://6lowapp.net core interim, 2012-05-16

Discussion 16:37–17:15

� (link-format?)

17

http://6lowapp.net core interim, 2012-05-16

Planning 17:15–17:30

� Next interim?

18

