
1

WebRTC Data Channels
draft-jesup-rtcweb-data-02

Randell Jesup
Salvatore Loreto
Michael Tuexen

IETF Interim
Updated from IETF 82 presentation

2

Uses
● Side channels during a 'call' (mute status, etc)
● Chat
● File transfer
● Application synchronization
● Games
● Shared whiteboard
● Co-browsing
● Shared document editing (with audio and/or video)
● Many uses we haven't thought of yet

3

Data Channel Requirements
● Multiple data channels
● Reliable and unreliable
● Datagram and Stream (if reliable) paradigms
● MUST be congestion-controlled
● MUST be secure (*)
● Quality open-source userland implementation

needed for deployment
● See draft for other implementation requirements

4

Options
● Pseudo-TCP-over-UDP (reliable) + DCCP (unreliable),

both over DTLS-(ICE)-UDP
● Pseudo-TCP: no specification; in-use with source code
● DCCP: specification; no user land implementation

● SCTP-DTLS-(ICE)-UDP or
● DTLS-SCTP-(ICE)-UDP

● DTLS-SCTP specified (RFC 6083), SCTP-DTLS not currently (believed
to be straightforward)

● Provides reliable, unreliable, partial-reliable, datagrams and streams

5

Pseudo-TCP-over-UDP (reliable) +
DCCP (unreliable)

● Pros
● Well-known protocols
● Open-source pseudo-TCP available

● Cons
● Two protocols needed
● Loss-based congestion control (DCCP CCID3 is similar to

TFRC)
● No known-stable user-space DCCP available
● Multiple congestion-control flows (fights between flows)

6

SCTP-DTLS-(ICE)-UDP or
DTLS-SCTP-(ICE)-UDP

● Pros
● Single kitchen-sink protocol
● Open-source userspace implementation based on FreeBSD
● Direct support for stream API (in SCTP-DTLS)
● Option of partial-reliability and out-of-order delivery
● Single congestion-control flow

● Cons
● Limitations sending large datagrams (but SCTP-DTLS can use

streams)
● Loss-based congestion control (but replaceable)
● SCTP-DTLS has no draft currently (shouldn't be a problem)
● Single receive window (see Open Issues)

7

SCTP-DTLS-(ICE)-UDP vs
DTLS-SCTP-(ICE)-UDP

● SCTP-DTLS
● Direct use of the SCTP API

– Such as reliable-channel streaming, partial-reliability, etc
● No draft, though should be straightforward
● Interleaving of large datagrams can (easily) be added to SCTP

● DTLS-SCTP
● Can use kernel implementation (browsers generally won't,

though)
● DTLS-SCTP specified in RFC 6083.
● Reliable channels would be datagrams, not streams (or

needs an extra layer)

8

Open issues
● SCTP

● Michael Thornburg's issues
– Blocking of other channels if one isn't serviced

● Draft for SCTP-DTLS needed if chosen
● Interleaving of large datagrams

● DCCP
● Is a userland implementation available? Quality?

● General
● Inter-stream priority (nice-to-have)
● Congestion control interactions with app and media streams
● PMTU sensing

9

Progress since IETF 82
● Updated userland SCTP released

(Win/Mac/Linux)
● API work by Justin Uberti

10

Congestion Control
● SCTP supports pluggable congestion control
● We want to have the data channels coexist with the delay-

sensitive congestion control planned for the media streams
● Some type of priority algorithm – must be fair, but must be

weightable
● Avoid starving media channels when doing large data

transfers
● Minimize delay sending data in sparse data channels
● Must work when competing with large TCP flows and not
● Ideas:

– Bandwidth set as % by with optional min/max caps
– Cx-TCP
– Default TCP-like or optional TFRC-compatible modes

11

Bandwidth % and caps
● The bandwidth allocated to the data channels could be

expressed as a % of total the media channel believes is
available

● Optional top and bottom caps would be a good idea
● % set a a result of channel priorities
● To use those bits for media when not used by data, would need

to allow the media channels to use bits (very) recently not used
by the data channels.

● Perhaps in period N let media encoders use unused data
bits from period N-1 – period must be short << 1s

● Implies data is fed to some type of output queue scheduler
● What do we do when there's still loss?

12

Cx-TCP
● Possible solution: replace congestion module with one based

on Cx-TCP (Budzisz, Stanojevic, Schlote, Baker et al)
● Cx-TCP is a delay-sensitive TCP congestion algorithm

shown to be fair with TCP flows and other Cx-TCP flows
● Cx-TCP approximates RED AQM; typically keeps delays low

(~20ms in their recent paper)
● Open investigation would be to prove fairness with

algorithms based on methods derived from Harald's draft
● Further investigation required to ensure this is usable in low-

load situations as it was designed for high-utilization links

13

TCP and TFRC-like control
● We could always use the default TCP-like or TFRC-like

congestion control algorithms
● Violates requirement to avoid starving media channels;

would likely need some way to limit maximum BW use
● Easy

14

Questions/Discussion
● Is there consensus on using SCTP? (I think yes)
● If so, what are people's opinions on ordering with

DTLS?
● What information is needed before consensus can

be reached?
● What congestion control method should be used?
● What does the API for different Data Channel options

look like? (W3C)
● What does the API for opening Data Channel channels

look like? (W3C)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

