
Conversation Starter:

HTTP/2 Delta
Compression & Binary

Optimized Header
Encoding (BOHE*)

James M Snell

* Pronounced as "bow"

A Quick Review...

Mark Nottingham and others have collected a
growing list of HTTP/1.1 traffic traces... stored
on Github as har files...
 https://github.com/http2/http_samples

These contain lots of request and response
header examples... I went through and
generated some stats about those headers...

https://github.com/jasnell/compression-
test/tree/master/counts

https://github.com/http2/http_samples
https://github.com/jasnell/compression-test/tree/master/counts
https://github.com/jasnell/compression-test/tree/master/counts
https://github.com/jasnell/compression-test/tree/master/counts

A Quick Review...

Let's look at an example, shall we?
https://github.com/jasnell/compression-test/blob/master/counts/google.com.har.txt

In a collection of request and response messages to
Google.com, we have 98 separate HTTP Messages. In
these, there are a total of 1,528 header fields. The values
of these headers account for 26,278 bytes sent over the
wire.

Let's break that down by specific examples...

https://github.com/jasnell/compression-test/blob/master/counts/google.com.har.txt
https://github.com/jasnell/compression-test/blob/master/counts/google.com.har.txt

A Quick Review...

In that sample of 98 messages, the Set-Cookie
header field appears only 3 times but accounts
for 866 bytes, 3.30% of the overall total. By it's
nature, the Set-Cookie header is highly
variable*

The Via header field appears 91 times and
accounts for 6,006 bytes, 22.86% of the overall
total. It's value rarely changes over multiple
requests.

** it's value frequently changes across multiple requests

A Quick Review...

The Date header field appears 91 times and
accounts for 2,639 bytes, 10.04% of the overall
total. The average length of each instance is 29
bytes and the value is moderately variable.

The Cache-Control header appears 87 times
and accounts for 2,070 bytes, 7.88% of the
overall total. The average length of each
instance is 23.79 bytes but ranges anywhere
between 7 and 56 bytes. The value is generally
static (typically, only max-age value changes)

A Quick Review...

The User-Agent field appears 97 times and
accounts for 10,282 bytes, 24.33% of the
overall total... even tho there is only a single
value for the entire set.

All date values combined account for around
7,256 bytes across 253 instances.

A Quick Review...

The point of all this is to say this:

 - Some header fields are highly redundant --
they frequently repeat the same values over
and over within a single session, wasting bytes-
on-the-wire (example: User-Agent)
 - Some header fields have extremely low
density -- they waste bytes with inefficient text
encodings (example: all date header fields)

Doing Better with Optimized
Encodings

Here's the basic idea:

 For HTTP/2, let's allow headers to optionally have binary
values. Each header would have a binary or text flag

 If the value is text, the HTTP/1 format is used. If the value
is binary, the optimized HTTP/2 format is used.

 The encodings will be designed to support 1.1 <=> 2.0
transformations with little or no data loss.

Some examples...

Dates in HTTP/1 are inefficiently encoded as
text... Example:

 Mon, 25 Jun 2012 14:34:28 GMT

Instead, let's set a new epoch (e.g. midnight on
Jan 1, 1990) and use seconds since that epoch
instead, then encode that using an unsigned
variable length integer (uvarint) ... we go from
29 bytes, to 4 bytes.

Some examples...

Applying this to our sample set, we get...

Date Header :
 HTTP/1 format -> 2,639 bytes
 Binary format -> 364 bytes (86.21% reduction)

Last Modified Header:
 HTTP/1 format -> 2,117 bytes
 Binary format -> 292 bytes (86.21% reduction)

Other optimizations we can make...

Let's go ahead and use uvarint for all numeric
header fields (status, content-length, age, etc)

 status drops from 3-bytes to 2-bytes

content-length drops from a range of 1-6 bytes,
to a range of 1-3 bytes

age drops from a range of 1-9 bytes, to a range
of 1-5 bytes.

Other optimizations we can make...

Let's also try optimizing Set-Cookie and Cache-
Control ...

Binary Set-Cookie format:
+---+

|H|S|B|P|M|X|X|X|len(key)|key|len(val)|val|

+---+

|len(path)|path|len(domain)|domain|expires|

+---+

|num_params|... repeating param key block |

+---+

H = HttpOnly bit, S = Secure bit

B = Binary value bit, P = Optional params bit

M = Expires is max-age delta not date

len(key) = 1 byte, len(val) = 4 bytes, len(path) = 2 bytes, len(domain) = 2 bytes

expires = uvarint, num_params = 2 bytes only if P is set

Using this format, we go from 866
bytes in the sample set, to only
132 bytes, an 84.76% reduction in
size without any loss of data.

Plus, the encoding can be easily
translated back to its HTTP/1
form.

Other optimizations we can make...
How about Cache-Control?
Requests:
 +----------+----------+---------------------+

 | no-cache | no-store | no-transform |

 +----------+-----+----+---------+-----------+

 | only-if-cached |xxxx| max-age | max-stale |

 +-----------+----+----+---------+-----------+

 | min-fresh | num-ext | repeating ext block |

 +-----------+-----+---+---------+-----------+

Responses:
 +--------+---------+----------+-------------+

 | public | private | no-cache | no-transform|

 +--------+-+-------+----------+-----------+-+

 | no-store | must-revalidate |proxy-reval|X|

 +----------+----------+-------+-----------+-+

 | max-age | s-maxage | num-no-cache-headers|

 +----------+-------+--+---------------------+

 | no-cache-headers | num-private-headers |

 +------------------+------------------------+

 |private-headers|num-ext|repeating ext block|

 +------------------+------------------------+

The no-cache, no-store, no-transform,
only-if-cached, public, private, must-
revalidate and proxy-reval fields are all
single bit flags.

max-age, max-stale, min-fresh, num-ext,
s-maxage, num-no-cache-headers, num-
private-headers and num-ext are all
uvarint's

By applying this encoding to the sample
set, we go from 2,070 bytes down to 736,
a 64.44% reduction in size without any
loss of data... and we can easily translate
back to HTTP/1

Big picture view...

In the google.com sample set, by applying just
the date, number, set-cookie and cache-control
optimizations, we save 8,601 bytes total.

Other examples:
Flickr (http://goo.gl/gi2Wd) - Total Unencoded Headers = 108,746 bytes / 219 msgs

 With Binary Encoding we save 20,997 bytes

LinkedIn (http://goo.gl/VlK3K) - Total Unencoded Hdrs = 28,882 bytes / 127 msgs

 With Binary Encoding we save 10,978 bytes

YouTube (http://goo.gl/61ijT) - Total Unencoded Headers = 79,452 bytes / 381 msgs

 With Binary Encoding we save 23,959 bytes

Let's look at Delta Encoding...

Binary-Optimized Header Encoding helps increase data-
density but does nothing to address the data-redundancy
issue...

Let's find a way to avoid sending redundant data over the
wire...

CRIME makes stream-compressors like gzip unusable.

(Developed by Roberto Peon...)

So what is Delta Compression
exactly?

In a nutshell, Only Send The Bits That Change.

Say you open a connection and send a request that
includes 10 headers.

Then you send another request with 10 headers but only
one has a different value than the first request.

With Delta, you tell the server to reuse the nine unchanged
headers and only send the new one.

Delta.. a closer look
(you know it's serious when we switch to a fixed-width font!)

Let's send a request!

:method = GET
:path = /foo/bar/baz
:scheme = HTTP
:host = example.net
:version = 2.0

Delta.. a closer look

Let's send a request!

:method = GET
:path = /foo/bar/baz
:scheme = HTTP
:host = example.net
:version = 2.0

We know that certain
headers and values are
extremely common, let's
take a second to define a
"default dictionary" of
headers and assign each a
number...

1 => :method = GET
2 => :scheme = HTTP
3 => :version = 2.0

Delta.. a closer look

Let's send a request!

:method = GET
:path = /foo/bar/baz
:scheme = HTTP
:host = example.net
:version = 2.0

Now that we have our
table, let's substitute
the headers in our request
for the ID's in our
default dictionary...

1 => :method = GET
2 => :scheme = HTTP
3 => :version = 2.0

Delta Encoding:

[
 {op:trang,start:1,end:3},
]

Delta.. a closer look

Let's send a request!

:method = GET
:path = /foo/bar/baz
:scheme = HTTP
:host = example.net
:version = 2.0

For the headers that
aren't in the default
dictionary, let's add them
(kvsto) and assign them an
ID

1 => :method = GET
2 => :scheme = HTTP
3 => :version = 2.0
4 => :path = /foo/bar/baz
5 => :host = example.net

Delta Encoding:

[
 {op:trang,start:1,end:3},
 {op:kvsto,key:':path',
val:'/foo/bar/baz'},
 {op:kvsto,key:':host',val:'example.net'}
]

Delta.. a closer look

Let's send a request!

:method = GET
:path = /foo/bar/baz
:scheme = HTTP
:host = example.net
:version = 2.0

Then we send an optimized
encoding of the Delta to
the server. Since it uses
the same default
dictionary, it is able to
reconstruct the message.

1 => :method = GET
2 => :scheme = HTTP
3 => :version = 2.0
4 => :path = /foo/bar/baz
5 => :host = example.net

Delta Encoding:

[
 {op:trang,start:1,end:3},
 {op:kvsto,key:':path',
val:'/foo/bar/baz'},
 {op:kvsto,key:':host',val:'example.net'}
]

Delta.. a closer look
Now let's send a second request, but change only the :path and add a new
header:

:method = GET
:path = /foo/bar/xyz
:scheme = HTTP
:host = example.net
:version = 2.0
Cache-Control = no-cache

If we look at our table,
we see that :method, :
path, :scheme, :host and :
version are already there.
We need to change the
value of :path by turning
off the old value and
creating a new one...

1 => :method = GET
2 => :scheme = HTTP
3 => :version = 2.0
4 => :path = /foo/bar/baz
5 => :host = example.net

Delta Encoding:

[
 {op:toggle,id:4},
 {op:clone,id:4,val:'/foo/bar/xyz'},
]

Delta.. a closer look
Now let's send a second request, but change only the :path and add a new
header:

:method = GET
:path = /foo/bar/xyz
:scheme = HTTP
:host = example.net
:version = 2.0
Cache-Control = no-cache

Then we need to add the
Cache-Control header...

1 => :method = GET
2 => :scheme = HTTP
3 => :version = 2.0
4 => :path = /foo/bar/baz
5 => :host = example.net
6 => :path = /foo/bar/xyz
7 => Cache-Control = no-cache

Delta Encoding:

[
 {op:toggle,id:4},
 {op:clone,id:4,val:'/foo/bar/xyz'},
 {op:kvsto,key:'Cache-Control',
 val='no-cache'}
]

Delta ops: toggle (switch on/off), trang (toggle range), kvsto (key-value store), clone
(clone existing), eref (ephemeral reference)

Delta.. a closer look
And now a third request! Removing the Cache-Control and back to the
original path...

:method = GET
:path = /foo/bar/baz
:scheme = HTTP
:host = example.net
:version = 2.0

Everything we need is
already in the dictionary!

1 => :method = GET
2 => :scheme = HTTP
3 => :version = 2.0
4 => :path = /foo/bar/baz
5 => :host = example.net
6 => :path = /foo/bar/xyz
7 => Cache-Control = no-cache

Delta Encoding:

[
 {op:toggle,id:6},
 {op:toggle,id:4},
 {op:toggle,id:7}
]

Notice how we don't have to tell it to use :method, :scheme, :host
and :version... those don't change so those aren't sent!

Delta.. a closer look
But wait a second...

What about this thing?

1 => :method = GET
2 => :scheme = HTTP
3 => :version = 2.0
4 => :path = /foo/bar/baz
5 => :host = example.net
6 => :path = /foo/bar/xyz
7 => Cache-Control = no-cache

In order for Delta Encoding to work,
the client AND server have to maintain
separate state tables for all requests
and responses. Those have to include
the key name and values for every
header that's been used in a given
session.*

* Up to a configured limit set by the receiver

Delta.. a closer look
But wait a second...

What about this thing?

1 => :method = GET
2 => :scheme = HTTP
3 => :version = 2.0
4 => :path = /foo/bar/baz
5 => :host = example.net
6 => :path = /foo/bar/xyz
7 => Cache-Control = no-cache

Obviously, these tables have the
potential of becoming quite large
depending on how variable the data is,
how densely it is encoded and how much
traffic is on the server.

Optimized binary encoding can help,
but we do not yet have a really
good idea of the impact this
additional state will have on
middleboxes and servers.

This is a critical issue!!

Speaking of Middleboxes...
How does Delta encoding work with proxies and such?

Client

Proxy

Server

Let's say we have a Client sending
an HTTP/2 request through a proxy,
which also uses HTTP/2 to talk to
the server... the client sends
it's delta encoded message to the
Proxy, which opens a connection to
the server and sends along it's
own delta encoded message.
Basically this is just a
passthrough...

[
 {op:trang,start:1,end:3},
 {op:kvsto,key:':path',val:'/foo/bar/baz'},
 {op:kvsto,key:':host',val:'example.net'}
]

[
 {op:trang,start:1,end:3},
 {op:kvsto,key:':path',val:'/foo/bar/baz'},
 {op:kvsto,key:':host',val:'example.net'}
]

The data dictionary is maintained at
the Client and the Server. The Proxy
has to maintain a minimal map of id's
to translate back and forth. We
currently do not have any good measures
of how much additional state the proxy
needs to keep track of!

Speaking of Middleboxes...
But what happens if the proxy and server use HTTP 1.1 to communicate?

Client

Proxy

Server

If the Proxy translates HTTP/2 to
HTTP/1, then the proxy, not the
server, must maintain the data
dictionary for translation.

For every HTTP/2 <=> HTTP/1,
separate data dictionaries must be
maintained (one for requests, one
for responses)

[
 {op:trang,start:1,end:3},
 {op:kvsto,key:':path',val:'/foo/bar/baz'},
 {op:kvsto,key:':host',val:'example.net'}
]

GET /foo/bar/baz HTTP/1.1
Host: example.net
...

This is going to cause Translating
Proxies to store a significant amount
of state depending on the current load
on the proxy. Again, We do not yet have
any measurements of this yet!

Some additional points on Delta...
● The receiver gets to put an upper limit on the size of the state table. The lower the

limit, the worse the compression will be.

● Delta uses huffman coding on header text values, with different huffman-tables for
the request vs response. the huffman values are EOF terminated, with the start of
each string byte-boundary aligned (for easy/cheap) addressing.

● Delta uses 'header groups' (by default, unless the server says otherwise, you get
only one of these). In that case, the set of 'toggl' instructions may change, as a
'header group' is simply a collection of things that we say are in a set of headers.

● It's not yet clear if there needs to be a way for the receiver to tell the sender to reset
the compression state. This could be dangerous.

● Delta provides the most benefit with highly redundant, low-variability header fields.
Still need mechanisms to increase data density.

● So far, it *appears* that Delta is resistant to CRIME style attacks.

BOHE + Delta...

By combining Binary Optimized Header
Encoding with Delta, we reduce redundancy
and improve data density. This lowers both bits
on the wire and the size of the stored
compression context.

BOHE also makes parsing header data much
more efficient.

Need to collect a lot more data!

What next?

0. Set specific priorities and goals for
improvement

1. Identify appropriate binary-optimized
encodings for selected headers

2. Test Delta Encoding thoroughly using as
much sample data as possible. We need input
from developers!

