12RS Topology Use Cases

Nabil Bitar, Samita Chakrabarti, Luyuan Fang, Wassim Haddad, Giles Heron, Ram Krishna, Himanshu Shah

General Description

- Mechanism to learn and to provision:
- 1. customer topology
- 2. service topology
- 3. service chaining

Customer Topology

- Interfaces
- Network Service and Attributes

Service Topology

- Service node per service
 - Liveliness
 - Performance (monitoring and stats)
- Service instantiation
 - Pre-built, spin up on demand, n:1 vs 1:1
- Service node capacity
 - CPU, B/W, policies, ACLs etc.

Service Chaining

- Service chaining / forwarding
- Classification of packets
- Service profile
- 2 models:
 - 1. Create whole chain at ingress (requires metadata in packet header?)
 - Recursive model where provision each link in the chain
- Need to support service multiplexing/demux
 - Mux example single firewall for multiple users
 - Demux example stateful load balance etc.

Scope and Scale

- Applicable to SP edge network and to NFV in the data-center.
- Applicable to service-aware network elements (PE routers, NFV elements)
- 3 types of operations:
 - Discovery/publishing when resources change.
 Can be learned dynamically or stored in centralized database.
 - Configuration when setting up a service
 - Monitoring/statistics very high frequency (should these be passed over I2RS API?)

What's Different for I2RS

- Via CLI and/or AAA systems (RADIUS or DIAMETER)
- Data/information model standardization
- Standardized APIs with rich semantics
- I2RS solution requires:
 - Data Model / Information Model
 - APIs
 - Provisioning / De-provisioning mechanics

Use-Case In Context

- Network application here is assumed to be customer service management (enabled FCAPS for network services).
- Network services can be L2/L3VPN, L4-L7 apps (firewalls, DDoS etc.).
- Assume application is layered above an SDN controller (or plugged into the controller)
- Will now focus on L3VPN use-case

L3VPN Service Provisioning with I2RS

L3VPN Service Chaining with I2RS

L3VPN use case context

- Assumptions
 - Service Provider network already supports L3VPN services
 - Hybrid model: I2RS + traditional service provisioning/monitoring
- Key Attributes of the services
 - Multi-tenant Layer 3 connectivity
 - Multi-point managed services

What events are needed

- PE/CE interface up/down
- PE/CE routing protocol up/down
- Control plane thresholds (e.g. number of routes learned exceeds limit)
- Data plane thresholds (e.g. bandwidth exceeds contracted rate per CoS)
- Others?

Data – Client pull from Agent

- List of candidate IP interfaces
- Data plane resource availability per candidate interface (Policers / Shapers / ACLs)
- Control plane resource availability (route memory, BGP sessions, VRFs, CPU etc.)
- Traffic statistics (per CoS etc.)

Data – Client push to Agent

- VRF creation
- RD/RT assignment to VRF
- Interface mapping to VRF
- PE/CE routing protocol configuration (protocol selection, parameters, route limits etc.)
- Interface OAM
- QOS: policers, shapers
- ACLs

Data – published by agent

- Data plane operational state (interface up/ down, OAM status etc.)
- Control plane operational state (routing protocol status, number of routes etc.)
- Traffic statistics (per CoS etc.)

What needs to be written/modified?

- Customer interface and VRF configuration needs to be written (see data pushed to agent on earlier slide)
- What does "state bulking" mean?

Client-Agent Interaction

- Client pushes data down to agent on a per-agent basis.
 - No requirement for transactions across multiple NEs
- Hybrid model:
 - Resources set aside for I2RS provision (other services may be configured using traditional CLI/AAA models)
- NE publishes events (see earlier slides)
- Bulk stats published by agent or pulled by client