JOSE Key Wrapping

draft-barnes-jose-key-wrapping



Two requirements from WebCrypto

Provide a format for an encrypted key, possibly
with attributes

Allow key wrapping with general AEAD
algorithms (e.g., GCM)



Two requirements from WebCrypto

Provide a format for an encrypted key, possibly
with attributes

Wrap JWK in JWE

Allow key wrapping with general AEAD
algorithms (e.g., GCM)
???



A tale of two wrapped keys

JWE wrapped key

{
"recipients": [{
"alg": "A128KW",
"kid": "thatone",
"encrypted key": /* key */
F1y
/* Remainder of JWE */

}

JWK within JWE

{

"alg": "dir",

"recipients": [{
"enc": "AI28KW",
"kid": "thatone",

Y1y
"ciphertext": /* key */
}



A tale of two wrapped keys

JWE wrapped key JWK within JWE

{ {

"recipients": [{ "alg": "dir",
"alg": "A1l28KwW", "recipients": [{
"kid": "thatone", "enc": "A128KW",
"encrypted key": /* key */ "kid": "thatone",

b1, Y1y

/* Remainder of JWE */ "ciphertext": /* key */

} }

No [obvious way to do] Distinction without
AEAD Key Wrap difference!




Wrapped Key == JWE(JWK)

... always and everywhere
...even in JWE



Basic Example

JWE wrapped key JWK within JWE

{ {

"enc": "Al128GCM", "enc": "A128GCM",

"alg": "A1l28KW", "key": {

"kid": "thatone", "enc": "Al1l28KW",

"encrypted key": /* key */ "kid": "thatone",

"initialization vector™: "...", "ciphertext": /* key */

"ciphertext": "...", Yo

"authentication tag": "..." "initialization vector": ".
} B "ciphertext": "...",

"

"authentication tag": "...



GCM Key Wrapping

JWE wrapped key JWK within JWE

/* Not allowed by syntax */ {

"enc": "Al1l28GCM",
"key": {
"enc": "Al28GCM",
"kid": "thatone",
"initialization vector":
"ciphertext": /* key */

"authentication_tag": "...

by

"initialization_vector": "moou"

"ciphertext": "...",
"authentication tag": "...

}



Compact Serialization

JWE wrapped key

"enc": "Al28GCM",
"alg": "A128KW",
"kid": "thatone",

"encrypted key": /* key */

"initialization_vector": "o,

"ciphertext": "...",
"authentication_tag": "..."

base64d ({"enc":"A128GCM", "alg":"

Al128KW","kid":"thatone"})
encrypted key
initialization vector
ciphertext
authentication tag

JWK within JWE

"enc": "Al128GCM",
"key" : {
"enc": "A128KW",
"kid": "thatone",

", "ciphertext": /* key */

by

"initialization vector": "...",
"ciphertext": "...",
"authentication tag": "..."

base64d ({"enc":"A128GCM", "key":
{"enc":"A128KW","kid":"thatone"}})
key.ciphertext
initialization vector
ciphertext
authentication tag



Compact Serialization [Overhead]

baseb4d ({"enc":"A128GCM", "alg":" baseb4d ({"enc":"A128GCM", "key":
A128KW","kid":"thatone"}) {"enc":"A128KW","kid":"thatone"}})

encrypted key key.ciphertext
initialization vector initialization vector

ciphertext . Ciphertext
authentication tag . authentication tag

eyJ1bmMiO1JBMTI4RONNIiwiYWxnIjolQTEYOEtXTIiwia2lkIjoidGhhdGO9uZSJ9Cg
-~ eyJlbmMiOiJBMTI4RONNIiwia2V5Ijp7ImVuYyI6IkExMihLVyIsImtpZCI6InRoYXRvbmUifX0K

10 octets



Compact Serialization [GCM]

JWE wrapped key

/* Not allowed by syntax */

JWK within JWE

"enc": "Al28GCM",
"key": {
"enc": "Al28GCM",
"kid": "thatone",
"initialization vector": "...",
"ciphertext": /* key */,
"authentication tag": "..."
by
"initialization_ vector": "...",
"ciphertext": "...",
"authentication_ tag": "..."

base64 ({

"enc": "Al128GCM",

"key": {
"enc":"A128GCM",
"kid":"thatone",
"initialization vector":

nw
14

"authentication tag": "...

}

key.ciphertext

. iInitialization vector
. ciphertext
. authentication tag

"

Large header, but now possible




Incremental complexity

Use "cty" to scale complexity / compactness

No "cty": octet string => symmetric key, lattrs

"cty": "application/jwk+json”

"cty": "application/jwk+cbor" [?]



Key Management for MAC

Having a consolidated wrapped key object
makes this trivial

Just add a field "key": { ... } to JWS/MAC

Multiple recipients == multiple "key" values
(for both JWE and JWS/MAC)



Proposal Summary

Wrapped key in JWE == JWE(JWK)
Add "key" field to JWE (and possibly JWS/MAC)

Adjust compactification algorithm to use key.
ciphertext instead of encrypted key

Remove "alg" field from JWE (since "alg"
becomes "key.enc")



Further down the rabbit
hole...



Object Model

key := JWE / kid / jwk / jku / x5c¢ / x5t

algorithm := name (parameter)+

JWE := algorithm authenticated attrs? key+ data icv
JWMAC := JWE

JWS := data (algorithm signed attrs? key 1cv)+

/

—— Define the JSON format based on an object model
-- Define a compactification of JWE / JWMAC / JWS
-—- For single recipient, essentially no change



