A% P lane

A Platform for
Measurement lteration

and Automation
Brian Trammell, CSG, ETH Zurich

First NMRG Workshop on Large Scale Network Measurements
Zurich, Switzerland, 14 October 2013



What is mPlane!

3-year EU FP7-funded research project, consortium of |6.

Goal: build a measurement platform for intra- and inter-domain
network performance troubleshooting support.

® Support automated and automation-assisted iterative
measurement for root cause analysis.

® Research new techniques in passive and active network
measurement and data analysis relevant to performance.

Insight: three years is not long enough to build and integrate a
bunch of working measurement tools.

Plan: Leverage existing tools through a simple, easy-to-
implement, “standard” interface that covers applicable metrics.



Everything’s a component

® A component implements the mPlane control interfaces:

® can advertise its capabilities,

® accepts measurement specifications,

® provides results (or receipts therefor), and

® may participate in brokered asynchronous data export.
® (lients direct components to perform measurements via interfaces
® Supervisor: component + client

® maps higher-level to lower-level specifications,

® consolidates results from lower-level components.

® Reasoner: client supporting automated measurement iteration.



General Architecture

capability -
specification -
result

reasoner

capability - supervisor capability -
specification - specification -
result result

repository

\-—-‘

asynchronous data export




Statements

capabilities 3| specification result

supervisor

capabilities

components

\//’



Capabilities

® What can a component do?

® Produce measurements (of a given type, directly or
via a given protocol)

® Consume measurements (of a given type, via a given
protocol)

® Other stuff (free-form, matched by name)

® (Capabilities have parameters.
® Must be given in a specification to use the capability

® Parameters have constraints (i.e., acceptable values)



Specifications, Results,
and Receipts

® A specification is an order to a component to
perform a measurement or analysis.

® Essentially a “filled-in” capability.
® A result may be returned immediately...

® in the same format as the specification, with all
parameters intact.

® _.or later by presenting a receipt.

® Specifications for asynchronous export coordinate
the exchange of data among components.



lterative measurement

® |terative measurement uses the results of
one measurement to influence inputs or
choice of a subsequent measurement.

® _.natural pattern in “drill-down” during
troubleshooting

® Reasoner automates iteration by learning
which subsequent measurements are most
likely to result in a determination of cause.



Flexible Data Model
and [ransport

® Statement (capability, specification, result) data model
defined separate from serialization format.

® Reference implementation: ]SON

® Examples (for readability): YAML

® Multiple app-layer protocols for moving statements
among components, supporting both push and pull for
each statement type

® Default: HTTP over TLS w/mutual auth

® FEasier key management: raw messages over SSH



Yay! We've (re-)invented
middleware!

® | ess ugly than the W3C Web Services
stack, but basically just measurement-aware
RESTful RPC with timing, delay tolerance,
asynchronicity.

® How does this get us any closer to
measurement interoperation!?



Types

® Network measurement produces rows in
databases.

® Analysis munges rows into other rows.

® The measurement or analysis performed is
completely described by the schema...

® _.if you've designed the schema right.

® Operations of common measurement tools can
be fully described by the data types involved.



Information Model

Notification

— <:>

Statement

Capability q

P

Specification

~

value=

nil

Receipt

7~

Inil

Parameter

nil

Inil

ResultValue

Element

Result

>‘ Primitive |

Type Registry




Type Interoperability

Schema = table, template
Element = column, info element
Primitive = storage representation

Two schemas are compatible if one is a
subset of the other.

Interoperability becomes a matter of
ensuring elements have equivalent meanings.



Type Registry

® Structured namespace of Elements

® [value].[modifiers].[units].[function]:
[primitive]

® ec.g. delay.twoway.icmp.ms.mean: natural

® Mappings to IPFIX Information Elements when
appropriate.

® Current registry covers network flow, common
active measurements, and QoS use cases.



Example: ping

® capability: measure

parameters:
start.ms: now...+inf
end.ms: now...+inf
source.ip4: 10.2.3.4
destination.ip4: *
period.s: |...60

results:
- delay.twoway.icmp.ms.min
- delay.twoway.icmp.ms.mean
- delay.twoway.icmp.ms.max



Example: ping

® specification: measure
parameters:

start.ms: 2013-09-13 11:30:00
end.ms: 2013-09-13 11:31:00
source.ip4: 10.2.3.4
destination.ip4: 10.4.5.6
period.s: |

results:
- delay.twoway.icmp.ms.min
- delay.twoway.icmp.ms.mean
- delay.twoway.icmp.ms.max



Example: ping

results: measure

parameters:
start.ms: 2013-09-13 11:30:01.045
end.ms: 2013-09-13 11:31:01.044
source.ip4: 10.2.3.4
destination.ip4: 10.4.5.6
period.s: |

results:
- delay.twoway.icmp.ms.min
- delay.twoway.icmp.ms.mean
- delay.twoway.icmp.ms.max

resultvalues:
--4]

- 47
- 53



Example: tracerouteb

® capability: measure
link: mplane-https://supervisor.example.com/traceroute
parameters:
start.ms: now...Finf
end.ms: now...Finf
source.ip6:2001:618:1:102::2
destination.ip6: *
hops.ip6.max: |...255
delay.twoway.udp.ms.count: |...3
results:
- intermediate.ipé
- hops.ip6
- delay.twoway.udp.ms



Example: tracerouteb

® specification: measure
parameters:
start.ms: now
end.ms: now

source.ip6:2001:618:1:102::2

destination.ip6: 2001:470:26:9c2::3

hops.ip6.max: 32

delay.twoway.udp.ms.count: |
results:

- intermediate.ip6

- hops.ip6

- delay.twoway.udp.ms



Example: tracerouteb

results: measure
parameters:
start.ms: now
end.ms: now
source.ip6:2001:618:1:102::2
destination.ip6: 2001:470:26:9c2::3
hops.ip6.max: 32
delay.twoway.udp.ms.count: |
results:
- intermediate.ip6
- hops.ip6
- delay.twoway.udp.ms
resultvalues:
- - 2001:618:ffff:1::1036: |
-
-4
- - 2001:618:ffff:1::1035:2
-2
-7
- - 2001:7f8:24::aa
-3
-9



comparing mPlane
and RIPE Atlas

® RIPE Atlas: ~4k small active hardware probes provide traceroute,
ping, DNS.

® Protocol + implementation + instantiation

® Centralized set of RIPE-operated controllers running Atlas-
specific control and reporting protocols.

e REST API for data access.
e Control subject to credit availability.

® Atlas’ tests are mostly covered by the mPlane reference
implementation.

® |[nterop experiment: mPlane interface proxy to Atlas API, allow
retrieval of results by Atlas participants.



