
A Platform for
Measurement Iteration

and Automation
Brian Trammell, CSG, ETH Zurich

First NMRG Workshop on Large Scale Network Measurements
Zurich, Switzerland, 14 October 2013

What is mPlane?
• 3-year EU FP7-funded research project, consortium of 16.

• Goal: build a measurement platform for intra- and inter-domain
network performance troubleshooting support.

• Support automated and automation-assisted iterative
measurement for root cause analysis.

• Research new techniques in passive and active network
measurement and data analysis relevant to performance.

• Insight: three years is not long enough to build and integrate a
bunch of working measurement tools.

• Plan: Leverage existing tools through a simple, easy-to-
implement, “standard” interface that covers applicable metrics.

Everything’s a component

• A component implements the mPlane control interfaces:

• can advertise its capabilities,

• accepts measurement specifications,

• provides results (or receipts therefor), and

• may participate in brokered asynchronous data export.

• Clients direct components to perform measurements via interfaces

• Supervisor: component + client

• maps higher-level to lower-level specifications,

• consolidates results from lower-level components.

• Reasoner: client supporting automated measurement iteration.

General Architecture

probe repository

supervisor

client

capability -
specification -

result

capability -
specification -

result

asynchronous data export

capability -
specification -

result

reasoner

Statements

supervisor

capabilities specification result

client

capabilities specification result

components
components
components

Capabilities

• What can a component do?

• Produce measurements (of a given type, directly or
via a given protocol)

• Consume measurements (of a given type, via a given
protocol)

• Other stuff (free-form, matched by name)

• Capabilities have parameters.

• Must be given in a specification to use the capability

• Parameters have constraints (i.e., acceptable values)

Specifications, Results,
and Receipts

• A specification is an order to a component to
perform a measurement or analysis.

• Essentially a “filled-in” capability.

• A result may be returned immediately...

• in the same format as the specification, with all
parameters intact.

• ...or later by presenting a receipt.

• Specifications for asynchronous export coordinate
the exchange of data among components.

Iterative measurement

• Iterative measurement uses the results of
one measurement to influence inputs or
choice of a subsequent measurement.

• ...natural pattern in “drill-down” during
troubleshooting

• Reasoner automates iteration by learning
which subsequent measurements are most
likely to result in a determination of cause.

Flexible Data Model
and Transport

• Statement (capability, specification, result) data model
defined separate from serialization format.

• Reference implementation: JSON

• Examples (for readability): YAML

• Multiple app-layer protocols for moving statements
among components, supporting both push and pull for
each statement type

• Default: HTTP over TLS w/mutual auth

• Easier key management: raw messages over SSH

Yay! We’ve (re-)invented
middleware!

• Less ugly than the W3C Web Services
stack, but basically just measurement-aware
RESTful RPC with timing, delay tolerance,
asynchronicity.

• How does this get us any closer to
measurement interoperation?

Types

• Network measurement produces rows in
databases.

• Analysis munges rows into other rows.

• The measurement or analysis performed is
completely described by the schema...

• ...if you’ve designed the schema right.

• Operations of common measurement tools can
be fully described by the data types involved.

Information Model

Type Registry

Statement

Capability Specification Result

Schema Element

Receipt

Notification

Primitive

Parameter

nil !nil

ResultValue

nil !nilvalue=

Type Interoperability

• Schema = table, template

• Element = column, info element

• Primitive = storage representation

• Two schemas are compatible if one is a
subset of the other.

• Interoperability becomes a matter of
ensuring elements have equivalent meanings.

Type Registry

• Structured namespace of Elements

• [value].[modifiers].[units].[function]:
[primitive]

• e.g. delay.twoway.icmp.ms.mean: natural

• Mappings to IPFIX Information Elements when
appropriate.

• Current registry covers network flow, common
active measurements, and QoS use cases.

Example: ping
• capability: measure

parameters:
 start.ms: now...+inf
 end.ms: now...+inf
 source.ip4: 10.2.3.4
 destination.ip4: *
 period.s: 1...60
results:
 - delay.twoway.icmp.ms.min
 - delay.twoway.icmp.ms.mean
 - delay.twoway.icmp.ms.max

Example: ping
• specification: measure

parameters:
 start.ms: 2013-09-13 11:30:00
 end.ms: 2013-09-13 11:31:00
 source.ip4: 10.2.3.4
 destination.ip4: 10.4.5.6
 period.s: 1
results:
 - delay.twoway.icmp.ms.min
 - delay.twoway.icmp.ms.mean
 - delay.twoway.icmp.ms.max

Example: ping
• results: measure

parameters:
 start.ms: 2013-09-13 11:30:01.045
 end.ms: 2013-09-13 11:31:01.044
 source.ip4: 10.2.3.4
 destination.ip4: 10.4.5.6
 period.s: 1
results:
 - delay.twoway.icmp.ms.min
 - delay.twoway.icmp.ms.mean
 - delay.twoway.icmp.ms.max
resultvalues:
 - - 41
 - 47
 - 53

Example: traceroute6
• capability: measure

link: mplane-https://supervisor.example.com/traceroute
parameters:
 start.ms: now...+inf
 end.ms: now...+inf
 source.ip6: 2001:618:1:102::2
 destination.ip6: *
 hops.ip6.max: 1...255
 delay.twoway.udp.ms.count: 1...3
results:
 - intermediate.ip6
 - hops.ip6
 - delay.twoway.udp.ms

Example: traceroute6
• specification: measure

parameters:
 start.ms: now
 end.ms: now
 source.ip6: 2001:618:1:102::2
 destination.ip6: 2001:470:26:9c2::3
 hops.ip6.max: 32
 delay.twoway.udp.ms.count: 1
results:
 - intermediate.ip6
 - hops.ip6
 - delay.twoway.udp.ms

Example: traceroute6
• results: measure

parameters:
 start.ms: now
 end.ms: now
 source.ip6: 2001:618:1:102::2
 destination.ip6: 2001:470:26:9c2::3
 hops.ip6.max: 32
 delay.twoway.udp.ms.count: 1
results:
 - intermediate.ip6
 - hops.ip6
 - delay.twoway.udp.ms
resultvalues:
 - - 2001:618:ffff:1::1036:1
 - 1
 - 4
 - - 2001:618:ffff:1::1035:2
 - 2
 - 7
 - - 2001:7f8:24::aa
 - 3
 - 9

comparing mPlane
and RIPE Atlas

• RIPE Atlas: ~4k small active hardware probes provide traceroute,
ping, DNS.

• Protocol + implementation + instantiation

• Centralized set of RIPE-operated controllers running Atlas-
specific control and reporting protocols.

• REST API for data access.

• Control subject to credit availability.

• Atlas’ tests are mostly covered by the mPlane reference
implementation.

• Interop experiment: mPlane interface proxy to Atlas API, allow
retrieval of results by Atlas participants.

