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What is mPlane?
• 3-year EU FP7-funded research project, consortium of 16.

• Goal: build a measurement platform for intra- and inter-domain 
network performance troubleshooting support.

• Support automated and automation-assisted iterative 
measurement for root cause analysis.

• Research new techniques in passive and active network 
measurement and data analysis relevant to performance.

• Insight: three years is not long enough to build and integrate a 
bunch of working measurement tools.

• Plan: Leverage existing tools through a simple, easy-to-
implement, “standard” interface that covers applicable metrics.



Everything’s a component

• A component implements the mPlane control interfaces:

• can advertise its capabilities,

• accepts measurement specifications,

• provides results (or receipts therefor), and

• may participate in brokered asynchronous data export.

• Clients direct components to perform measurements via interfaces

• Supervisor: component + client

• maps higher-level to lower-level specifications, 

• consolidates results from lower-level components.

• Reasoner: client supporting automated measurement iteration.
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Capabilities

• What can a component do?

• Produce measurements (of a given type, directly or 
via a given protocol)

• Consume measurements (of a given type, via a given 
protocol)

• Other stuff (free-form, matched by name)

• Capabilities have parameters.

• Must be given in a specification to use the capability

• Parameters have constraints (i.e., acceptable values)



Specifications, Results, 
and Receipts

• A specification is an order to a component to 
perform a measurement or analysis.

• Essentially a “filled-in” capability.

• A result may be returned immediately...

• in the same format as the specification, with all 
parameters intact.

• ...or later by presenting a receipt.

• Specifications for asynchronous export coordinate 
the exchange of data among components.



Iterative measurement

• Iterative measurement uses the results of 
one measurement to influence inputs or 
choice of a subsequent measurement.

• ...natural pattern in “drill-down” during 
troubleshooting

• Reasoner automates iteration by learning 
which subsequent measurements are most 
likely to result in a determination of cause.



Flexible Data Model 
and Transport

• Statement (capability, specification, result) data model 
defined separate from serialization format.

• Reference implementation: JSON

• Examples (for readability): YAML

• Multiple app-layer protocols for moving statements 
among components, supporting both push and pull for 
each statement type

• Default: HTTP over TLS w/mutual auth

• Easier key management: raw messages over SSH



Yay! We’ve (re-)invented 
middleware!

• Less ugly than the W3C Web Services 
stack, but basically just measurement-aware 
RESTful RPC with timing, delay tolerance, 
asynchronicity.

• How does this get us any closer to 
measurement interoperation?



Types

• Network measurement produces rows in 
databases.

• Analysis munges rows into other rows.

• The measurement or analysis performed is 
completely described by the schema...

• ...if you’ve designed the schema right.

• Operations of common measurement tools can 
be fully described by the data types involved.



Information Model
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Type Interoperability

• Schema = table, template

• Element = column, info element

• Primitive = storage representation

• Two schemas are compatible if one is a 
subset of the other.

• Interoperability becomes a matter of 
ensuring elements have equivalent meanings.



Type Registry

• Structured namespace of Elements

• [value].[modifiers].[units].[function]: 
[primitive]

• e.g. delay.twoway.icmp.ms.mean: natural

• Mappings to IPFIX Information Elements when 
appropriate.

• Current registry covers network flow, common 
active measurements, and QoS use cases.



Example: ping
• capability: measure

parameters:
    start.ms: now...+inf
    end.ms: now...+inf
    source.ip4: 10.2.3.4
    destination.ip4: *
    period.s: 1...60
results:
    - delay.twoway.icmp.ms.min
    - delay.twoway.icmp.ms.mean
    - delay.twoway.icmp.ms.max



Example: ping
• specification: measure

parameters:
    start.ms: 2013-09-13 11:30:00
    end.ms: 2013-09-13 11:31:00
    source.ip4: 10.2.3.4
    destination.ip4: 10.4.5.6
    period.s: 1
results:
    - delay.twoway.icmp.ms.min
    - delay.twoway.icmp.ms.mean
    - delay.twoway.icmp.ms.max



Example: ping
• results: measure

parameters:
    start.ms: 2013-09-13 11:30:01.045
    end.ms: 2013-09-13 11:31:01.044
    source.ip4: 10.2.3.4
    destination.ip4: 10.4.5.6
    period.s: 1
results:
    - delay.twoway.icmp.ms.min
    - delay.twoway.icmp.ms.mean
    - delay.twoway.icmp.ms.max
resultvalues:
    - - 41
      - 47
      - 53



Example: traceroute6
• capability: measure

link: mplane-https://supervisor.example.com/traceroute
parameters:
    start.ms: now...+inf
    end.ms: now...+inf
    source.ip6: 2001:618:1:102::2
    destination.ip6: *
    hops.ip6.max: 1...255
    delay.twoway.udp.ms.count: 1...3
results:
    - intermediate.ip6
    - hops.ip6
    - delay.twoway.udp.ms



Example: traceroute6
• specification: measure

parameters:
    start.ms: now
    end.ms: now
    source.ip6: 2001:618:1:102::2
    destination.ip6: 2001:470:26:9c2::3
    hops.ip6.max: 32
    delay.twoway.udp.ms.count: 1
results:
    - intermediate.ip6
    - hops.ip6
    - delay.twoway.udp.ms



Example: traceroute6
• results: measure

parameters:
    start.ms: now
    end.ms: now
    source.ip6: 2001:618:1:102::2
    destination.ip6: 2001:470:26:9c2::3
    hops.ip6.max: 32
    delay.twoway.udp.ms.count: 1
results:
    - intermediate.ip6
    - hops.ip6
    - delay.twoway.udp.ms
resultvalues:
    - - 2001:618:ffff:1::1036:1
      - 1
      - 4
    - - 2001:618:ffff:1::1035:2
      - 2
      - 7
    - - 2001:7f8:24::aa
      - 3
      - 9



comparing mPlane 
and RIPE Atlas

• RIPE Atlas: ~4k small active hardware probes provide traceroute, 
ping, DNS.

• Protocol + implementation + instantiation

• Centralized set of RIPE-operated controllers running Atlas-
specific control and reporting protocols.

• REST API for data access.

• Control subject to credit availability.

• Atlas’ tests are mostly covered by the mPlane reference 
implementation.

• Interop experiment: mPlane interface proxy to Atlas API, allow 
retrieval of results by Atlas participants.


