A distributed measurement method exploiting path overlapping in large scale network systems

Dinh Tien Hoang, <u>Go Hasegawa</u>, Masayuki Murata Osaka University, JAPAN

Background

- Measurement of network resource information

Network resource information

- Available bandwidth, delay, packet loss rate, link failures, …
- Essential information for network applications
- Should be measured frequently to obtain high measurement accuracy

Overlapping paths

Paths that have common IP links

□ Path AC : (A,R_1,R_2,C)

 \square Path ED : (E,R_1,R_2,D)

Measurement conflict

- Occurs when overlapping paths are measured concurrently
- Causes measurement error especially in bandwidth measurement
- Large link stress

Router

Measurement agent

Background

- Existing measurement methods

- Measurement tasks of overlapping paths are scheduled at different timings in centralized manner [1]
 - Avoid measurement conflicts completely
 - Require complete topology information of the IP network to detect overlapping paths
 - Time and network traffic for the aggregation of topology information is large
 - Low measurement accuracy due to low measurement frequency

^[1] M. Fraiwan and G. Manimaran, "Scheduling algorithms for conducting conflict-free measurements in overlay networks", *Computer Networks*, vol 52, pp. 2819-2830, Oct. 2008

Objective and approach

- Objective : Propose distributed measurement method with high measurement accuracy
- Approach : Information exchange between measurement agents
 - Exchange route information to detect overlapping paths to determine measurement frequency and timings
 - Exchange measurement results to improve measurement accuracy and reduce measurement tasks
 - To increase measurement frequency, we give up avoiding measurement conflicts completely, but maintain measurement accuracy by information exchange

Outline of the proposed method

- Detect path overlaps
- Determine measurement frequency and timings
 - Frequency is determined based on the degree of path overlaps
 - Overlapped paths are measured in random timings
- Conduct measurement
 - Latency
 - bandwidth
 - Link failure (under development)
- Exchange measurement results

Detection of overlapping paths

Step 1: Node A checks the routerlevel paths to node B, C, and D.

Step 2: Based on the path information, node A infers that AB and CD overlaps the route

paths

measurement frequency timings of AB and BC to avoid conflict

Exchange measurement results

- Exchange measurement results among overlay nodes sharing the overlapping parts
- Use statistical process for exchanged measurement results to improve measurement accuracy
 - Our method can NOT avoid measurement conflict completely, but maintain the measurement accuracy by measurement results exchange and statistical process
 - So, the increasing measurement frequency while decreasing measurement conflicts is important for improving the measurement accuracy

Overhead reduction in bandwidth measurement

[Bandwidth measurement algorithm: binary search]

[Find appropriate initial search range to reduce measurement overhead]

- Exchange measurement results of overlapping paths
- 2. Use statistical process for measurements results to calculate initial search range

Simulation experiments

- Measurement metrics: latency and available bandwidth
- Compare with existing method [1]
 - Centralized method, no measurement conflict
- Performance metrics
 - Measurement accuracy
 - Relative errors of measurement results
 - System overhead
 - Measurement overhead
 - Information exchange overhead
 - □ Route information
 - Measurement results

[1] M. Fraiwan and G. Manimaran, "Scheduling algorithms for conducting conflict-free measurements in overlay networks", *Computer Networks*, vol 52, pp. 2819-2830, Oct. 2008

Simulation settings

- Network models
 - Network topology
 - AT&T router-level network (523 nodes and 1304 links)
 - Measurement agents are chosen randomly among network nodes
 - Density of measurement agent : 0.2
- Measurement errors by conflict
 - Determined by queueing theory

Evaluation results (1)

- Accuracy in latency measurement

AT&T topology

Proposed method

- Most of the paths have relative error less than 10%
- Maximum of relative error is about 20%

Existing method

- About 45% of the paths have relative error less than 10%
- Maximum of relative error is about 50%

Measurement accuracy is much improved in our method

Evaluation results (2)

- Accuracy in bandwidth measurement

Distribution of relative errors

Method	Relative error				
	≧0.05	≧0.I	≧0.2	≧0.4	Measurement accuracy is far better in proposed method
Existing method	56.600%	32.184%	9.576%	1.432%	
Proposed method	41.999%	18.087%	3.260%	0.194%	
					12

Evaluation results (2)

- System overhead in latency measurement

AT&T topology

information exchange overheadmeasurement overhead

- Information exchange overhead in proposed method is larger than existing method
- Measurement overhead in proposed method is smaller than existing method

Measurement accuracy can be improved by slightly shifting overhead from measurement to information exchange

Conclusions

- Proposed a distributed measurement method
 - Detect the overlapping of paths by exchanging route information
 - Improve measurement accuracy and reduce measurement overhead by exchanging measurement results
- Evaluation by simulation experiments
 - Relative error in proposed method is much smaller than the existing method
- Measurement accuracy can be improved and by slightly shifting overhead from measurement to information exchange

Thank you!