BGPSEC Quick Tutorial

Sandra Murphy <u>sandy@tislabs.com</u>
Chris Morrow morrowc@opsnetman.net

Why BGPSEC, isn't RPKI enough?

- RPKI is the set of data which provides certification of resource allocation
- Right now, RPKI can be used to protect origin validation
- BGPSEC is about protecting path validation

RPKI – Resource Certificates

Resource certificate, not identity certificate

29 Oct 2014

Certs & Route Origin Authorization

Sign a Route Origin
Authorization (ROA) for
your address space.
Your certificate validates
the signature

Certificate lists the addresses you hold and who gave them to you

CA certificate

Key: EnterpriseKey

Signed by: ARIN

Addresses: 10.2/16

ROASignedObject

Signed by: EnterpriseKey

Addresses: someofyouraddresses

Valid Origin: some one ASN

The ROA lists the valid origin for those addresses

Example RPKI Origin Validation

RPKI Provides Origin Validation:

29 Oct 2014

RPKI "ROA": prefix holder authorizes AS4 to advertise routes to Good Server AS2 checks the validation state of the routes:

INVALID (Origin is not AS4): AS2 ► AS5

(Origin is AS4): AS2 \triangleright AS3 \triangleright AS4 VALID

(Origin is AS4): AS2 ► AS6 ► AS7 ► AS3 ► AS4

Why isn't origin validation enough?

AS5 can still advertise a route to the Good Server with AS4 at the origin: (even though AS5 isn't connected to AS4)

 VALID AS1 ► AS2 ► AS5 ► AS4 (Origin is AS4):

(Origin is AS4): AS1 ► AS2 ► AS3 ► AS4 **VALID**

AS1 ► AS2 ► AS6 ► AS7 ► AS3 ► AS4 (Origin is AS4): 29 Oct 2014

SIDR/IDR interim meeting

SIDR BGPSEC Doc Overview

- draft-ietf-sidr-bgpsec-overview overview of the set of documents related to BGPSEC (good summary)
- Basis for BGPSEC work
 - RFC7132 Threat Model for BGP Path Security (basis for why)
 - RFC7353 Security Requirements for BGP Path Validation
- draft-ietf-sidr-bgpsec-protocol-09 BGPSEC Protocol Specification (obviously important to read)
- draft-ietf-sidr-bgpsec-ops-05 BGPsec Operational Considerations (has languished, but explains thinking about operations)
- Crypto stuff (not crucial to understand BGP impact)
 - draft-ietf-sidr-bgpsec-pki-profiles-08 A Profile for BGPSEC Router Certificates,
 Certificate Revocation Lists, and Certification Requests
 - draft-ietf-sidr-bgpsec-algs-08 BGP Algorithms, Key Formats, & Signature Format
- Crypto stuff (about router crypto management, more than BGP impact)
 - draft-ietf-sidr-rtr-keying Router Keying for BGPsec

Idea of BGPSEC

- Need to protect the formation of the AS_PATH
 - Prevent grafting valid origin on path
 - Prevent path poisoning
- So sign everything you receive to prove you didn't invent the path
 - Include the AS you are sending to, to prevent cut-andpaste creation of a signed path
- New attribute
- New capability only send new attribute to neighbors who can handle it

BGP Process

- •BGP receives many routes to the same prefix
- Ingress filter decides what routes to consider
- Decision process picks just one best route
- Egress filter decides what neighbors receive an update

BGPSEC Process

AS 123 AS 345 AS 567

- Each update has a signature for each AS in the BGPSEC PATH
 - Each signature covers BGPSEC_PATH to that point and the "sent-to" AS
- At ingress, check all signatures
- At egress, add a new signature to the list when you add your AS, and include the AS you are sending to in the signature
- Routers have keys tied to their AS in the RPKI

Other Diff from BGP

- AS_PATH it is encoded in the BGPSEC_Path Attribute.
 - It is not present as a separate attribute
 - Another reason for the capability negotiation
- There's an algorithm to extract the usual AS_PATH from the BGPSEC_Path attribute
 - Could be used internal to an implementation
 - I.e., to compute path length
 - Must be used at a boundary with a non-BGPSEC speaking neighbor

Other Diff from BGP

- One neighbor per update
 - You are including your neighbor in the signature, so can only send to one neighbor
- One NLRI per Update
 - If multiple NLRI, signature would cover them all, so real hard to choose just one NLRI from the group to propagate
- Route servers
 - Route servers typically hide their AS from AS_PATH
 - Their AS will be included in BGPSEC_Path attribute, but extraction of AS_PATH does not include route server (specially marked) – so does not affect path length

Can also handle

- Prepending
 - Don't want N signatures for N prepends
 - pcount field in the BGPSEC_PATH attribute
- Confederations
 - A flag to note when neighbor is in the same confederation (like AS_CONFED_SEQUENCE)
- Migration
 - BGPSEC attributes can behave just like "local AS", "replace AS" in current BGP.

The Details

- Optional non-transitive attribute BGPSEC_Path attribute
 - Secure Path and Signature block
 - Secure Path is 1 or more SecurePathSegments

Prepending count – just one signature covers a list of prepended ASs

Flag to denote confederation

BGPSEC_Path Attribute

AS 123 AS 345 AS 567

BGPSEC_PATH =123, NLRI= 2/8

BGPSEC_PATH=345,123, NLRI= 2/8

Net 2/8 --- Sig123(345,123, 2/8)

Sig345(567, 345,Sig123)

Sig123(345,123, 2/8)

+	+
AS Number	123
+	+
pCount	1
+	+
Flags	0
+	+
signature	(345,123,1,0)[sigA]
+	+

+	+
AS Number	345
pCount	1
+ Flags	0
AS Number	123
pCount	1
Flags	0
signature	(567,345,1,0,sigA)
signature +	(345,123,1,0)[sigA]

BGPSEC – Internal and External

BGPSEC signing and validation occurs only on eBGP connections BGPSEC attributes are carried but not produced or checked on iBGP connections

iBGP-no BGPSEC processing

BGPSEC vs. nonBGPSEC

BGPSEC attribute only used with BGPSEC speaking neighbor BGPSEC attributes in an Update get stripped for nonBGPSEC neighbor

Islands of BGPSEC

Non BGPSEC speaker can't pass BGPSEC attributes – keeps islands apart