
TLS SNI Encryption

Author: Erik Nygren (erik+ietf@nygren.org)

2014-05-15

1 of 10



Why SNI?
Multi-tenant hosting of sites

Server needs to know which certificate to return

Load-balancers need to know where to steer TCP connections

Without SNI, must resort to an IP address per cert

This means potentially hundreds of millions of IPv4 addresses wasted

IP-to-cert associations leaks information to passive eavesdroppers

With SNI:

Not all servers behind an IP may be in the same security domain

(eg, with a TCP-terminating but not TLS-terminating demultiplexer)

2 of 10



SNI Transition Challenge
Transition challenge: only ~85% of clients send an SNI header

Older Android, Windows XP, custom clients, and others do not send one

Requiring SNI isn't yet an option for many sites and blocks scaling to "TLS everywhere"
with IPv4

Lack of incremental deployability is a problem

Without requiring SNI, waste millions of IPv4 addresses

SAN and wildcard certs only help so much (e.g., with hundreds of thousands of
hostnames)

3 of 10



4 of 10



The Privacy Challenge

Passive listeners (Eve) can observe which site (Host/ServerName) is
being visited

SNI primarily makes things worse for the cases where it is most needed
(multi-tenant)

Eve can just ask the IP for its certificate, so a privacy issue even without it

Even if the SNI is encrypted:

Little-to-no benefit if DNS is in-the-clear

Doesn't stop traffic analysis due to nature of underlying HTTP flows

Requiring encrypted SNI server-side for all requests would actually make
things better

Likely an impossible transition challenge (no fall-back options)

6 of 10



SNI Encryption Challenges
Adds extra RTTs and extra complexity

Current proposal also vulnerable to active attacks

Many resulting-but-necessary mitigations/work-arounds eliminate most
privacy gains:

Separate IPs-per-server

Identifier in request (eg, server_key_label in PredictedParameters, if poorly implemented)

Building features vulnerable to active attacks into TLS makes it hard to
reason about

May make more sense to put OE at a lower layer?

7 of 10



Options for TLS 1.3 - part 1/2
Leave SNI as-is in-the-clear for now

Provides additional information to passive eavesdroppers for multi-tenant server IPs

Opportunistically encrypt SNI (as per draft-rescorla-tls13-new-flows)

May force some sites to put off using TLS or to use server IPs per cert

May still provide too much information to passive eavesdroppers based on keyid in
handshake

Adds additional RTTs and complexity in many cases

Information still leaked in the DNS until/unless it is secured

8 of 10



Options for TLS 1.3 - part 2/2
Use Opportunistic Encryption at a lower layer to protect handshake

For example: tcpcrypt or ipsec

Benefit: having things vulnerable to active attacks in TLS makes it hard to reason about

Put handshake bootstrap into the DNS

Opt-in (ie, requires putting records in the DNS)

Ties benefits to improving security of the DNS

May still provide too much information to passive eavesdroppers based on
server_key_label in handshake

Does not add additional TCP roundtrips but may require additional DNS roundtrips

Requires careful design to enable deployability

9 of 10



Appendix: Example Sketch of
Handshake Bootstrap in the DNS

New "Service Binding" ("B") record:

_https._b.www.example.com B "service=server1.example.com,
port=443, alpn=h2, handshake_params_key=68sgjbjfsd8fyjgbsgd7863,
handshake_params_token=5sdfkj335, pri=5,
dane_cert_name=version83.ca.example.com"

10 of 10


