
TLS 1.3 SNI Protection Big Picture

Eric Rescorla

ekr@rtfm.com

IETF 89.5 (TLS Interim) TLS 1.3 Handshake Flows 1



SNI Protection in Context

• Basic assumption is that multiple sites share a given IP

• Motivations

– Anti-censorship

– Prevent monitoring

• Other vectors

– DNS queries

– Traffic analysis of TLS

• Protecting SNI is a down payment on preventing attack

– Not a complete solution

– Need TLS padding and probably assume DNS-E is coming

IETF 89.5 (TLS Interim) TLS 1.3 Handshake Flows 2



SNI Protection Options (High Level)

• Do nothing

• Abandon SNI

– Possibly with delegation

• Pre-arranged key

– Disseminated via DNS, prior handshake, etc.

• Anonymous DHE before SNI

– What was in draft-rescorla-tls13-flows-01

IETF 89.5 (TLS Interim) TLS 1.3 Handshake Flows 3



Delegation?

• Server has certificates for domains A and B

– SNI lets the client indicate which one it wants

• Alternative: let A endorse B

– So client can always ask for B

– Use next-level up indicator (e.g., Host:) for switching/routing

• Lots of implementation options

– DNS SRV

– TLS header

– HTTP Alt-Svc (this is mostly an HTTP issue)

• This has obvious other advantages

IETF 89.5 (TLS Interim) TLS 1.3 Handshake Flows 4



Optimism versus Certainty

• Traditionally TLS assumes clients know nothing about server

– We are moving towards modes that assume client state

• Optimistic

– Client thinks it knows server capabilities

– But falls back if it’s wrong

• Certain

– Client knows server capabilities

– Fails if it’s wrong

IETF 89.5 (TLS Interim) TLS 1.3 Handshake Flows 5



Example: SNI Encryption With External Key

Client Server DNS

Resolve www.example.com //

IP = X.X.X.X, PK=Ksoo

ClientHello, SNI=E(Ks,www.example.com)
//

• What happens if the server forgets Ks?

• Connection failure

IETF 89.5 (TLS Interim) TLS 1.3 Handshake Flows 6



Example: Session Resumption

Client Server

ClientHello, Session=XXX //

ServerHello, Session=YYYoo

• If server loses state, it just corrects the client and it falls back

• Connection succeeds

• Cost is protocol complexity

IETF 89.5 (TLS Interim) TLS 1.3 Handshake Flows 7



Can we split the problem?

• External keys and delegation assume client knowledge

• But that knowledge might be implanted in multiple ways

– DNS (probably DNSSEC)

– Previous TLS connections

– HTTP headers

– Other unspecified mechanisms

• Would be nice to have flexibility here

IETF 89.5 (TLS Interim) TLS 1.3 Handshake Flows 8



What do we need from secure DNS?

• DNSSEC provides integrity (ostensibly we have this now)

– Absolutely needed for delegation

– Needed for encryption with active attack resistance

– ... but not against passive attack

• DNS-E (whatever that is) provides confidentiality

– But caching gives a lot of this anyway

IETF 89.5 (TLS Interim) TLS 1.3 Handshake Flows 9



Who bears the cost?

• It’s clear this is not a universally wanted feature

• Can we put the cost on those who want it

– Opt-in from servers

– Allow clients to ignore

IETF 89.5 (TLS Interim) TLS 1.3 Handshake Flows 10



What decision do we need to make?

• Does the TLS state machine need to accomodate this?

• In-band DHE requires significant state machine support

• The rest do not

• Need to decide between those groups

• Can do detailed design of delegation, external keys, etc. later.

IETF 89.5 (TLS Interim) TLS 1.3 Handshake Flows 11


