

Variant 1
• No DNS, 1RTT

• Plaintext SNI

• Client -> PHDH, Client Random, Ciphersuites, Type A Extensions

• Server <- PHDH, [PHCCS], Ciphersuite, Cert, Signed Randoms+DHParams,
<CertRequest>, Type A & B Extensions

• Client -> [PHCCS], <ClientCert>, DHParams, <SupplementalData>, Type B
Extensions, <CertificateVerify>, [CCS] HTTP

• Server <- [CCS], HTTP

• Failure Scenario:

• Server does not support your PHDH: (2-RTT) Server jumps to Server message
of Variant 3

Variant 2
• DANISH w/ B-Record, 1RTT

• Client -> PHDH, KeyID, [PHCSS], Client Random, Ciphersuites, Type A
Extensions

• Server <- [PHCCS], Ciphersuite, Cert, Signed Randoms+DHParams,
<CertRequest>, Type A & B Extensions

• Client -> <ClientCert>, DHParams, <SupplementalData>, Type B
Extensions, <CertificateVerify>, [CCS] HTTP

• Server <- [CCS], HTTP

• Failure Scenario:

• Server does not recognize KeyID: (2-RTT) Server jumps to Server message
of Variant 3

Variant 3
• In-Bound eSNI, 2-RTT

• Client -> Huh?

• Server <- PHDH, KeyID

• (This key is generic, KeyID so you can use it for later)

• Client -> PHDH, KeyID, [PHCSS], Client Random, Ciphersuites, Type A Extensions

• Server <- [PHCCS], Ciphersuite, Cert, Signed Randoms+DHParams, <CertRequest>, Type A & B
Extensions

• Client -> <ClientCert>, DHParams, <SupplementalData>, Type B Extensions, <CertificateVerify>, [CCS]
HTTP

• Server <- [CCS], HTTP

• Limitations

• NIST vs Non-NIST Problem: This is not a problem if Danish is available, but we're in this situation so we
assume it's not.

• Solved by subsetting IP addresses for defaults

Remove Variant 3?
• Can't rid of the V3/2-RTT scenario, because the failure modes of V1 and

V2 require it.

• Unless the failure modes of V1 and V2 use an entirely new TLS
connection, which means TCP roundtrip, which we're unwilling to do

• If we get rid of 'Huh' we have 2 (3) choices

• Tell implementors what to put as fake data in V1 (doesn't belong in
spec)

• Tell implementors 'be creative’ (hah)

• Abandon the idea of eSNI w/o DNS data, but we’ll do (b) anyway

• The Huh? message makes is simpler for implementors to do

Load Balancers
Client Load Balancer Server

!
----------------------------|

 |-------------------------|

 decrypt, strip, pass on

This is bad.

!
!
---------------------------x--------------------------|

 decrypt, do not modify

 or

 KeyID become SNI-equivalent(get back bitstring matching)

This is good. The SNI-Equivalent is a Security Consideration.

Suggestions
• Servers MUST accept Variant 1, 2, or 3

• Clients SHOULD make Danish Request

• If they receive a response, they MUST use
Variant 2

• If they do not, they MAY choose between Varient
1 & 3

Advantages of eSNI
• Advantages of doing Variant 2 (B-Records) vs Not:

• Type A Extensions are protected

• SNI, SRP, and others

• w/ DNSSEC protects Type A & Type B extensions
against Active MITM

• Number of Client PHDH's goes from N to 1

Extensions
• Type A: Client offers, server accepts

• Not Protected against Active or Passive MITM in
Variant 1

• Protected against Passive MITM in 2 & 3, Active
MITM w/ DNSSEC

• Type B: Server offers, client accepts

• Protected against Passive MITM in 1, 2 & 3, Active
MITM w/ DNSSEC

Classifying Extensions
• Type A

• SNI

• signature_algorithms

• trusted ca indication

• server_authz

• openpgp

• ECC Extensions

• SRP (Username in the clear! Security
Considerations: Don't use except in
Variants 2&3)

• signature_algorithms

• padding

!
• Type B

• client certificate urls

• truncated hmac

• OCSP Stapling & Multi OCSP

• user mapping

• client_authz

• use_srtp

• heartbleed

• Cert Transparency

No Type B?

• If we try to get rid of Type B extensions, all
extension/negotiation offers will be in cleartext.

• If unacknowledged SupplementalData (from the
Client) makes sense, that can be protected though.

