
TLS 1.3 Status

Eric Rescorla

ekr@rtfm.com

IETF 90 (pre-interim) TLS 1.3 1

ekr@rtfm.com


Overview

• Review of changes

• Overview of 1RTT handshake

• 1RTT open issues

IETF 90 (pre-interim) TLS 1.3 2



Changes since -01

• Increment version number.

• Removed support for compression.

• Removed support for static RSA and DH key exchange.

• Removed support for non-AEAD ciphers

• Remove custom DHE groups.*

• Reworked handshake to provide 1-RTT mode.*

• * More on following slides

IETF 90 (pre-interim) TLS 1.3 3



1RTT Assumptions

• Client can make a good guess at server groups

– (Hence forbidding custom groups)

• Defer SNI encryption

– But don’t deal with it just yet (see this afternoon)

• Encrypt as much of handshake as possible

IETF 90 (pre-interim) TLS 1.3 4



Overall 1RTT Flow

ClientHello

ClientKeyExchange -------->

ServerHello

ServerKeyExchange

[ChangeCipherSpec]

{EncryptedExtensions*}

{Certificate*}

{CertificateRequest*}

{CertificateVerify*}

<-------- {Finished}

[ChangeCipherSpec]

{Certificate*}

{CertificateVerify*}

{Finished} -------->

Application Data <-------> Application Data

IETF 90 (pre-interim) TLS 1.3 5



New ClientKeyExchange

• Client can provide an arbitrary number of (EC)DHE shares

• Each corresponds to a single potential group

– Only one (EC)DHE share per group

• MUST be independently generated

IETF 90 (pre-interim) TLS 1.3 6



New ClientKeyExchange Syntax

enum { dhe(1), (255) } KeyExchangeAlgorithm;

struct {

KeyExchangeAlgorithm algorithm;

select (KeyExchangeAlgorithm) {

dhe:

ClientDiffieHellmanParams;

} exchange_keys;

} ClientKeyExchangeOffer;

struct {

ClientKeyExchangeOffer offers<0..2^16-1>;

} ClientKeyExchange;

struct {

DiscreteLogDHEGroup group; // from draft-gillmor

opaque dh_Yc<1..2^16-1>;

} ClientDiffieHellmanParams;

IETF 90 (pre-interim) TLS 1.3 7



Should we be renaming this message (WTC)

• Very different syntax from current CKE

– You’ll need different code in any case

– We’ve got plenty of code points

• Though serves the same purpose

– What will we call it, ClientKeyExchange2?

• Proposal: ???

https://github.com/tlswg/tls13-spec/issues/58

IETF 90 (pre-interim) TLS 1.3 8

https://github.com/tlswg/tls13-spec/issues/58


Extension handling

• All client extensions are in the clear as before

• Server extensions are split

– Extensions needed to establish cryptographic parameters go in

ServerHello

– All other extensions go in EncryptedExtensions

• Currently EncryptedExtensions override other extensions

• Proposal

– Each extension MUST identify where it goes (default is

encrypted)

– Misplaced extensions generate an error

https://github.com/tlswg/tls13-spec/issues/66

IETF 90 (pre-interim) TLS 1.3 9

https://github.com/tlswg/tls13-spec/issues/66


Revised ServerKeyExchange

• The original ServerKeyExchange carried the server parameters

and a signature

• Parameters are now in the ECC or draft-gillmor extensions

• Signature moved to cover whole server flight

IETF 90 (pre-interim) TLS 1.3 10



New ServerKeyExchange Syntax

struct {

opaque dh_Ys<1..2^16-1>;

} ServerDiffieHellmanParams; /* Ephemeral DH parameters */

struct {

select (KeyExchangeAlgorithm) {

case dhe:

ServerDiffieHellmanParams;

/* may be extended, e.g., for ECDH -- see [RFC4492] */

} params;

} ServerKeyExchange;

• No need to identify parameters, since they are negotiated before

IETF 90 (pre-interim) TLS 1.3 11



What about the server’s signature?

• It’s now in CertificateVerify

• This needs to be the last message so it covers the entire handshake

• Improves commonality between client and server

IETF 90 (pre-interim) TLS 1.3 12



Backward Compatibility

• You can’t put extra handshake messages in the first message flight

– Breaks old TLS implementations

• Instead stuff them in an extension

IETF 90 (pre-interim) TLS 1.3 13



EarlyData Syntax

struct {

TLSCipherText messages<5 .. 2^24-1>;

} EarlyDataExtension;

• Note that these are TLS Records

• Overkill for now but will be useful for 0-RTT

– Since we can carry application_data

IETF 90 (pre-interim) TLS 1.3 14



What if the client guesses wrong?
ClientHello

ClientKeyExchange -------->

<-------- ServerHello

ClientHello

ClientKeyExchange -------->

ServerHello

ServerKeyExchange

[ChangeCipherSpec]

{EncryptedExtensions*}

{Certificate*}

{CertificateRequest*}

{CertificateVerify*}

<-------- {Finished}

[ChangeCipherSpec]

{Certificate*}

{CertificateVerify*}

{Finished} -------->

Application Data <-------> Application Data

• The last half of this is the same as the normal handshake

(consensus from Denver)

IETF 90 (pre-interim) TLS 1.3 15



How does client distinguish these two handshakes?

• Current model

– Compare the ciphersuite/group to your CKE

– If no match, then you need to try again

• Other options

– Have some explicit rejection indicator

– Add a new message type, though it is pretty much going to

have the same contents.

https://github.com/tlswg/tls13-spec/issues/57

IETF 90 (pre-interim) TLS 1.3 16

https://github.com/tlswg/tls13-spec/issues/57


Interaction with Triple Handshake Fix

• draft-bhargavan-tls-session-hash-00 specifies computing

the master keys from the handshake transcript

• But at time of key computation server and client certificate have

not yet been sent

– However, transcript would cover both DHE shares

• This is inherent in encrypting the certificates∗

– Since you need to have keys before they are sent

• Needs analysis

• Proposal: Postpone till we know about removing renegotiation
∗Though we could compute two sets of keys

IETF 90 (pre-interim) TLS 1.3 17

http://tools.ietf.org/html/draft-bhargavan-tls-session-hash-00


Other issues?

IETF 90 (pre-interim) TLS 1.3 18


