Routing State Abstraction

Using Declarative Equivalence

draft-gao-alto-routing-state-abstraction-01

G. Chen! K.Gao® X.Wang?> Y.R.Yang*
'Huawei 2Tongji University 3Tsinghua University ~4Yale University

October 26, 2015@ ALTO Interim Meeting

Motivation Bigger Picture

» A general objective of ALTO is to provide generic

network state to applications for better traffic
optimization

» Itis important that ALTO provide abstract network state

» Protect information privacy
» Improve scalability

raw state abstract state

Motivation Limitations

» The current ALTO standard can provide

» any network information for a single flow

» flow-irrelevant network information for multiple flows,
such as hopcount

» statistical network information based on the Law of
Large Numbers for multiple flows, such as the average
RTT between PIDs

Motivation Limitations

» The current ALTO standard can provide

» any network information for a single flow

» flow-irrelevant network information for multiple flows,
such as hopcount

» statistical network information based on the Law of
Large Numbers for multiple flows, such as the average
RTT between PIDs

» Generally speaking, where the decisions for each flow
are independent

Motivation Limitations (cont.)

» However, many applications require multi-flow
coordination

» Map-Reduce scheduling in data centers
» Traffic engineering in an ISP network
>

Motivation Limitations (cont.)

» However, many applications require multi-flow
coordination
» Map-Reduce scheduling in data centers

» Traffic engineering in an ISP network
>

» Path vector can solve this by providing network state
with common network elements for all the flows

» network element: link/AS/...
» network state: properties/statistics/...

Motivation A Path-Vector Example

End host 1

End host 3

Figure: Example Topology

"PID1": { "PID3": {
"PID2":["nel5", "neb56", "ne67", "ne27"], "PID2":["ne35", "ne57", "ne27"],
"PID4": ["nel5", "ne57", "ne47"] "PID4": ["ne35", "ne57", "ne47"]
, },
"PID2": { "PID4": {
"PID1": ["ne27", "ne57", "nel5"], "PID1": ["ne47", "ne75", "nel5"],
"PID3": ["ne27", "ne57", "ne35"] "PID3": ["ne47", "ne57", "ne35"]

}, }

Motivation Key Question

How to compute abstract network state

Motivation Key Question

How to compute abstract network state

» Return dynamic network state

Motivation Key Question

How to compute abstract network state

» Return dynamic network state

» Return minimal network state

Motivation Key Question

How to compute abstract network state

» Return dynamic network state
» Return minimal network state

» Return equivalent network state

Motivation Equivalence

A Generic Definition:
The abstract network state A for a user request is
equivalent to the raw network state R, if and only if

the user can make the same optimized decision with

A as with R.

RSADE Scope

The RSADE, Routing State Abstraction using Declarative
Equivalence, is proposed to provide such a network state
abstraction service for a certain family of optimization:
utilizing the objective function.

Objective Function
An expression containing variables and
mathematical constants.

Variable
Just like a math variable but usually has a specific
physical significance.

RSADE Criteria of Equivalence

Optimal Equivalence

If the object function has the same solution using A
andR, A andR are considered equivalent.

RSADE Criteria of Equivalence

Optimal Equivalence
If the object function has the same solution using A
andR, A andR are considered equivalent.

Range Equivalence

If the values of all linear combinations of variables,
computed with A andR, have the same range, A and
R are considered equivalent.

RSADE Input

Flow descriptor

Specify the relevant flows.

» Legacy: use EndpointFilter
» New: use FlowFilter*

Equivalence Condition

Describe how the network can effect the decision
making.

» In RSADE, we limit this to /inear inequalities per link.

RSADE Output

Abstract Network State

» Path vector
Return path vectors and let application construct the
constraints.

» Constraints*
Construct the constraints for the application using the
format defined in equivalence conditions and return
them.

RSADE FlowFilter

How to specifiy FlowFilter

» A list of flows

» Consider possible OpenFlow use case: use tuples
instead of destinations alone

» Each flow can be described as a (src, dst) combination

FlowFilter flow-1list

flow-list flow-spec, [flow-list]

flow-spec generic-match-condition

RSADE Extensions for FlowFilter

» Extension 1: more advanced endpoint address
descriptors

» draft-wang-alto-ecs-flows-00
» Extension 2: more fields in the flow specification

» Examples: web-proxy, qos—-group, etc.

RSADE Equivalence Condition

How to specify Equivalence Conditions

» Two kinds of inequalities

» network-irrelevant: the constraint is application-specific
» network-relevant: the constraint uses properties in the
network

» Consider the structure of a network-relevant inequality

Math constants (provided by application)
Variables (provided by application)

Link properties (provided by network)

The routing information (provided by network)

vV vy vy

R[1] * flowl + R[2] * flow2 < 0.8 * bandwidth

» Optional: provide the objective function

RSADE

Equivalence Condition (cont.)

equiv-cond
variable-list

X0
simple-constraint
simple-expr

link-constraints-list
link-constraint
link-expr

variable-list XO link-constraint-list
variable-name[, variable-list]
simple-constraint[, simple-constraint]
simple-expr CMP-OP simple-expr

constant * variable-name[+ simple-expr]

link-constraint[, link-constraint-list]

= link-expr CMP-OP link-expr

constant | attribute-name | variable-name
constant * link-expr

attribute-name * link-expr

link-expr + link-expr

See draft-gao-alto-routing-state-abstraction-01 for details.

RSADE Example

End host 1
End host 2

End host 4

End host 3

Figure: Example Topology

Assume each link is 100Mbps and apply

» Flow descriptor:
flows eh1->eh2(blue) and eh3->eh2(red)

» Equivalence condition:
R[1] * flowl + R[2] * flow2 <= bandwidth

RSADE

Example (cont.)

We get

nelb:
neb6:
ne67:
ne27:
neb7:
ne3b:

End host 1

End host 3

O O B P

¥ ¥ ¥ X ¥ *

flowl
flowl
flowl
flowl
flowl
flowl

+ o+ o+ o+ + o+

kR, OO0 O
* ¥ X X * %

flow2
flow2
flow?2
flow2
flow2
flow2

Figure: Example Topology

100M
100M
100M
100M
100M
100M

RSADE Example (cont.)

In order to satisfy the minimal and equivalent criteria, we
have defined the following terms:

[Equivalence] Two constraint sets S; : {X|A1 X <= by} and
So : {X|A2X <= Bg} of a network function are
equivalent if and only if they limit the decision
variables in the same way: XoN'S; = X N Sa.

[Redundant] A constraint sis redundant to a constraint set S
if and only if s € S and the two sets Sand S\ {s}
are equivalent.

[Minimal Constraint Set] A constraint set S is minimal if and
only if Vs € S, sis not redundant.

RSADE Example (cont.)

End host 1

End host 2

End host 4
End host 3

Figure: Example Topology

The minimal constraint set is
ne27: 1 *x flowl + 1 * flow2 <= 100M
And the corresponding path vector response is

ehl -> eh2: [ne27 1],
eh3 -> eh2: [ne27]

RSADE Example (cont.)

End host 1

End host 3

Figure: Example Topology

Change the bandwidth of ne57 to 70Mbps, we have

nelb: 1 *x flowl + 0 * flow2 <= 100M
neb6: 1 *x flowl + 0 *x flow2 <= 100M
ne67: 1 * flowl + 0 * flow2 <= 100M
ne27: 1 * flowl + 1 *x flow2 <= 100M
neb7: 0 * flowl + 1 *x flow2 <= 70M
ne35: 0 * flowl + 1 *x flow2 <= 100M

RSADE Example (cont.)

End host 1
End host 2

End host 4
End host 3

Figure: Example Topology

In this case, the minimal constraint set is

ne27: 1 x flowl + 1 x flow2 <= 100M
neb7: 0 x flowl + 1 *x flow2 <= 70M

And the corresponding path vector response is

ehl -> eh2: [ne27 1],
eh3 -> eh2: [ne27, nebT7]

RSADE Path Vector

The path vector form of the second response in the example
is demonstrated below:

"endpoint-cost-map": {
"eh1": ["eh2" : ["anel"] 1],
"eh3": ["eh2" : ["anel", "ane2]]
},
"network-elements": {
"anel": { "bandwidth": "100 Mbps" },
"ane2": { "bandwidth": "70 Mbps" }

RSADE Extension: Constraint Form

The constraint form of the second response in the example is
demonstrated below:

"flow-constraints": [
"flowl + flow2 <= 100000000",
"flow2 <= 70000000"

Thank you

	Motivation
	RSADE

