
Questions from the Security Review
of Architecture document

(draft-ietf-i2rs-architecture-07)

Sue Hares

Topics

• Questions from the security review
• My understanding of answers and open

changes
• Review of where we are with ephemeral State
• Discussion about the Architecture view of the

protocol

Questions
1. Is a new protocol needed?
2. Have you considered validating the secondary

identity
3. Is design for security and the nature of the

asynchronous protocol complete in this
document?

4 reboot
a. Is there a difference between I2RS Client reboot

and I2RS Agent reboot?
b. If the I2RS Client fails, does the I2RS Agent know

how to identity an alternative one?

Questions

5. What is collision?
• What happens If two requests at same time from different

clients?
• What happens if the a second client over-writes the first

client.
• How does this interact with role?

Question 1 – Do we need New
protocol?

• My first question when I started reading this document
was why do we need a new protocol.
– Wouldn't SNMP or NETCONF do this just fine? And there

are probably lots of others [protocols]
– Section 3.1 says "There have been many efforts over the

years to improve the access to the information available to
the routing and forwarding system." It would be good to
understand why those efforts failed before inventing some
new syntax (when it is unlikely the syntax is what killed
previous efforts).

– Then section 7.1 says the protocol will be "based on"
NETCONF and RESTCONF. What does "based on" mean in
this context?

Q1: Is a new Protocol Needed?

• Why Did other protocols fail?
– SNMP – MIBs hard to write, not programmatic
– Light weight protocols: Apache THRIFT possible
– NETCONF/RESTCONF – still in progress, but developers

willing to work with us
• WG Direction -

– All Feature Protocol: NETCONF and RESTCONF
• Write draft defining additional features
• Get input from implementers

– Light-weight: Waiting for a proposal

Q1: Next steps

• Requested presentations on protocol
– RESTCONF features
– draft-voit-i2rs-pub-sub-requirements-00
– Any light-weight proposals

• Next decisions
– DOES RESTCONF or RESTCONF+pub/sub meet

I2RS’s needs?
– Should we support a Light-weight protocol +

heavy weight?

Q2 – Validating credential of Second ID
Architecture reference: Secondary identity -
forwarding some opaque identifier of that
requesting entity to the I2RS Agent for logging.

– Use Case: Broker

I2RS
Client 1

I2RS
Agent1

I2RS
Client2

I2RS
Agent2

Client 2 can pass “client1” as
opaque string from client 2

To Agent 2

Q2 – Broker (Security Reviewer)
• Section 4 par 3. (and in some other places), you talk about the I2RS

Client acting as a broker forwarding requests for some other entity,
and forwarding some opaque identifier of that requesting entity to
the I2RS Agent for logging.
– This presumes that the I2RS is configured with (or has access to) the

authorization information that says which requestors are permitted to
do which operations.

• A useful extension to the protocol would be to be able to forward a
requestor-identity string that the Agent not only logs but also
checks for proper authorization before performing the requested
operation.
– The Agent would need to verify that both the Client and the client

asserted identity of the requestor be authorized to perform the
operation.

– This relatively simple change to the Agent and the protocol might
permit a considerably simpler client (if this brokered-request behavior
is actually common).

Q2 WG Decisions

• WG Decision
– Secondary identity is just opaque string which is

passed without verification for purposes of
trouble shooting and logging changes

– After deploying this feature, if something else is
needed we can revise the protocol.

• Next Step
– Nothing as WG LC has completed
– IETF LC is coming so let mail list or WG chairs if

you have any concerns.

Q3.1: Security and Asynchronous
Nature of I2RS protocol

Question: Is security and the support for the
asynchronous nature of the protocol fully
supported?

– Asynchronous usually means that you can launch
operations and then check back later whether they
successfully completed.

– If you want to execute a second operation only if a
first succeeds (or to guarantee the order in which they
execute), you need to at some point wait for
operations to complete

– There is also substantial overhead in supporting
asynchronous operation in that all transactions need
labels so that they can be queried?

– Have you done this?

Q3.1 Answers
• WG Decision:

– I2RS client must act and check back to see if state
change.

– Collision of Simultaneous Writes is considered error.
– Last Write wins is the current status
– I2RS Architecture current does not have label or

checkpoint.
• Checkpoints or transaction labels

– RESTCONF : No Checkpoint or transaction Labels exists
in RESTCONF.

– RESTCONF session is an atomic action
– NETCONF writes to Candidate store and can roll-

forward (Commit) or roll-back.

Q3.1 Next Steps

• Decision 1: Does I2RS protocol require a
checkpoint?
– Checkpoint == 1 monotonically incrementing

counter with discontinuity
• Decision 2: Does I2RS require Transaction

labels?
– WG decision: No

• Will send a note to list.

Q3.2 Security and Asynchronous
Nature of I2RS protocol

• A conceptually simpler strategy is to say that
since a client can make multiple parallel
connections to an agent that in cases where a
client wants asynchronous operation he opens
multiple connections and launches one
asynchronous operation on each.
– The cost is that is has lower performance in cases

where there are large numbers of parallel operations
tying up lots of connection state.

Q3.2 Asynchronous Nature
• WG status:

– WG has approved: Multiple parallel connections.
– WG has approved: RESTCONF as a candidate protocol, and

RESTCONF has 1 asynchronous set of operations per
connection.

• Decision point:
– 1) Only multiple parallel sessions with 1 set of asynchronous

operations per node (RESTCONF).
– 2) Transactions with Roll-forward/Roll-Back at Commit

(NETFCONF),
– 3) Full Transaction mode.
– Or some combination 1, 2, or 3

• Current architecture:
– 1 + 2 + 3 allowed (RESTCONF, NETCONF, and something else).

• Q: Should we restrict to 1 + 2?

Q3.3 Security and Asynchronous
Nature of I2RS protocol

• Comment: The last paragraph of 7.9 says "the protocol
will include an explicit reply to modification or write
operations even when they fully succeed". How does
this relate to the asynchronous nature of the protocol?

• Response
– WG Past Decision: Protocol would include explicit

responses to change or writes.
• WG Status:

– RESTCONF - appears to provide this feature
– NETCONF - ???

• WG decision: Is there a problem with replies?

Topic 4 - Ephemeral State in Reboot

• Ephemeral State.
a. Is there a difference between I2RS Client

reboot and I2RS Agent reboot?
b. If the I2RS Client fails, does the I2RS Agent

know how to identity an alternative one?
• Problem

– Some devices do not have a concept of ephemeral
state

Topic 4.1: Ephemeral State in Reboot (1)
Security person

• Section 6.2: The restriction that this protocol injects only ephemeral state
seems surprising, especially given that the circumstances under which the
ephemeral state is lost are defined in terms of a network device reboot.
– Some network devices may not have a clear notion of a reboot, or

might do it so rarely as to render such functionality useless. I was
confused by the discussion of agent reboots vs. device reboots.

• Text issues: 6.2
– The first paragraph seems to say that ephemeral state is lost when the

device reboots, but 6.2.1 seems to imply that state is lost when the
agent reboots.

– The sentence “Just as routing state will usually be removed shortly
after the failure is detected…” seems to imply that ephemeral state
might be lost when a client reboots.

• Text 6.3 Have you considered what happens to state when a client
disappears but the agent and server stay around forever.
– There is an option later in the document for some sort of timeout, but

I would think there would be some sort of mechanism to guarantee
that all ephemeral state disappears eventually unless the requestor is
still around implicitly renewing it.

Topic 4.1 Ephemeral State in Reboot (2)
(security reviewer)

• Also in 6.2.1, it appears that one piece of state is explicitly not
ephemeral... the agent keeps a non-ephemeral list of clients to
notify when ephemeral state is lost.
– If the client is not accessible, for how long does the agent continue to

try to contact it? Forever?
• The protocol requires that agents be able to open connections to

clients (in addition to clients being able to open connections to
agents).
– This will introduce lots of challenges. It means the client needs an

open port to accept connections, likely an SSL certificate, and will be in
trouble if it is behind a NAT or is mobile and does not have a stable IP
address.

– Other parts of the spec mention that two entities might have the
same client identity. In such cases, it will be tricky for the agent to
connect to "the right instance".

– It might be better to only allow clients to initiate connections to
agents, possibly with some sort of unauthenticated notification from
agent to client that initiating such a connection would be a good idea
(to reduce the overhead of the polling that would otherwise be
necessary).

Topic 4 - Ephemeral State in Reboot

• WG Ephemeral State.
a. Differences I2RS Client reboot and I2RS Agent

reboot are different, but the differences are
handled by the i2rs Architecture descriptions.

b. I2RS Client fails, does the I2RS Agent knows
how to reach another one for notifications or
publications.

Topic 4 - Details
• Current WG status on Agent

– Agent reboot and client reboot in some (not all) contexts.
– Agent reboot may be due to system or agent software.
– Agent which reboots loses ephemeral state and connections

state, but has NVM on which clients were connected to.
– Agent sends clients “rebooted” messages if previous connected
– Agent send clients request to connect if needs to publish or

notify.

• Current WG status on Client
– Client reboots may or may not lose state,
– Timeouts on client side of connection depend on application
– draft-voit-i2rs-pub-sub-requirements-00 – allows pub/sub to be

sent else where
• Question : Does architecture miss anything?

Topic 5 - Collisions
• Collisions

– Text unclear if these were collisions in the time sense
where two requests are made simultaneously by different
clients vs. whether it is a case where once client tries to
override the setting of another client.

• Problem with question brings up
– The role should prevent the write of one client over

another client unless both have write roles.
– Should there be only 1 write role per node; and is this a

agent issue
• Current WG status:

– Two Writes is an error, Client should handle.
– Two writes, latest one wins.

• Decision: Should we change?

Q5: Collisions (Security person)
• Section 7.8 talks about "collisions",

– but it wasn't clear (at least to me) whether these were
collisions in the time sense where two requests are made
simultaneously by different clients vs. whether it is a case
where once client tries to override the setting of another
client.

• Two clients validly update same parameter
– I also wonder whether there are cases where two changes

would interact in some way other than one of them
winning, as when two clients each want to increment the
bandwidth of some virtual like over which they are both
tunneling traffic (and where the correct result is to add the
two increments).

Q5: Collision
• Q5: Decision:

– Collisions are an error that clients must prevent
– Clients overwriting each other sequentially – is a client

problem
• Here: a checkpoint + discontinuity has been discussed
• No decision

– Decided the combination of two clients is the client
issues.

• Next Steps:
– Do these decision cover the Qs?
– If not, what should we add.

Summary

1. (Q1) DOES RESTCONF or RESTCONF+pub/sub
meet I2RS’s needs?

2. (Q1) Should we support a Light-weight
protocol + heavy weight?

3. (Q3.1) Does I2RS protocol require a
checkpoint?

4. (Q3.1) Does I2RS require Transaction labels?

Summary of Decisions (2)

5. Q3.2 Decision point:
– 1) Only multiple parallel sessions with 1 set of

asynchronous operations per node (RESTCONF).
– 2) Transactions with Roll-forward/Roll-Back at

Commit (NETFCONF),
– 3) Full Transaction mode.
– Or some combination 1, 2, or 3

• Current architecture:
– Current we allow any combination of 1, 2, or 3

• Question: Should we restrict to 1 + 2?

Confirm these decisions
• (Q2) – Secondary ID is just opaque string
• (Q3.1) No transaction labels required in protocol
• (Q3.3) WG decision: Replies on Writes (e.g. in RIB-Info)

• (Q4) Ephemeral State
a. Differences I2RS Client reboot and I2RS Agent reboot are

different, but the differences are handled by the i2rs
Architecture descriptions.

b. I2RS Client fails, does the I2RS Agent knows how to reach
another one for notifications or publications.

• Q5: Collision
– Two Writes is an error, Client should handle.
– Two writes, latest one wins.

