
draft-iet-i2rs-ephemeral-state-reqs-00

Jeffrey Haas and Susan Hares
(jhaas@pfrc.org and shares@ndzh.com)

Intent of this document

• To attempt to provide concrete examples of
desired I2RS protocol behavior.

• To drive discussion about potential
implementations of that behavior and their
representations in netconf/restconf and yang.

Changes

• Added 10 requirements from list

• Priority on NACM group versus NACM rule list

• Addition discussion on the semantics around
storing and managing priority and client id,

• Discussion on transactions

Top 10 requirements (1)

1. The I2RS protocol SHOULD support highly reliable
notifications (but not perfectly reliable notifications) from an
I2RS agent to an I2RS client.

2. The I2RS protocol SHOULD support a high bandwidth,
asynchronous interface, with real-time guarantees on getting
data from an I2RS agent by an I2RS client.

3. The I2RS protocol will operate on data models which may be

protocol independent or protocol dependent.

Top 10 Requirement (2)

4. I2RS Agent needs to record the client identity when a node is
created or modified. The I2RS Agent needs to be able to read
the client identity of a node and use the client identity's
associated priority to resolve conflicts. The secondary
identity is useful for traceability and may also be recorded.

5. Client identity will have only one priority for the client
identity. A collision on writes is considered an error, but
priority is utilized to compare requests from two different
clients in order to modify an existing node entry. Only an
entry from a client which is higher priority can modify an
existing entry (First entry wins). Priority only has meaning at
the time of use.

Top 10 Requirements (3)

6. The Agent identity and the Client identity should be passed
outside of the I2RS protocol in a authentication and
authorization protocol (AAA). Client priority may be passed in
the AAA protocol. The values of identities are originally set
by operators, and not standardized.

7. An I2RS Client and I2RS Agent mutually authenticate each other
based on pre-established authenticated identities.

8. Secondary identity data is read-only meta-data that is recorded
by the I2RS agent associated with a data model's node is
written, updated or deleted. Just like the primary identity,
the secondary identity is only recorded when the data node is
written or updated or deleted

Top 10 Requirements (4)

9. I2RS agent can have a lower priority I2RS client attempting to
modify a higher priority client's entry in a data model. The
filtering out of lower priority clients attempting to write or
modify a higher priority client's entry in a data model SHOULD
be effectively handled and not put an undue strain on the I2RS
agent.

10. The I2RS protocol MUST support the use of a secure transport.
However, certain functions such as notifications MAY use a non-
secure transport. Each model or service (notification, logging)
must define within the model or service the valid uses of a non-
secure transport.

Changes to placement of
I2rs priority in NACM

Old
draft-haas-i2rs-ephemeral state-00
+--rw rule-list [name]

+--rw name string
+--rw group* union
+--rw rule [name]

+--rw name string
+--rw module-name? union
+--rw (rule-type)?
| +--:(protocol-operation)
| | +--rw rpc-name? union
| +--:(notification)
| | +--rw notification-name? union
| +--:(data-node)
| +--rw path node-instance-identifier
+--rw access-operations? union
+--rw action action-type
+--rw comment? string
+--rw i2rs:i2rs-priority i2rs-priority-type

New
Draft-ietf-i2rs-ephemeral-state-00

+--rw nacm
+--rw enable-nacm? boolean
+--rw read-default? action-type
+--rw write-default? action-type
+--rw exec-default? action-type
+--rw enable-external-groups? boolean
+--ro denied-operations

yang:zero-based-counter32
+--ro denied-data-writes

yang:zero-based-counter32
+--ro denied-notifications

yang:zero-based-counter32
+--rw groups
| +--rw group [name]
| +--rw name group-name-type
| +--rw user-name* user-name-type
| +--rw i2rs:i2rs-priority i2rs-priority-type

No Multi-message atomicity & rollback
Multiple Message Handling

I2RS architecture does not include multi-message atomicity and rollback
mechanisms, but suggests an I2RS client may inidicate one of the following error

handling techniques for a given message sent to the I2RS client:

1. Perform all or none: All operations succeed or none of them will
be applied. This useful when there are mutual dependencies.

2. Perform until error: Operations are applied in order, and when
error occurs the processing stops. This is useful when
dependencies exist between multiple-message operations, and order
is important.

3. Perform all storing errors: Perform all actions storing error
indications for errors. This method can be used when there are
no dependencies between operations, and the client wants to sort
it out.

Previous discussed Requirements

5/27, 6/10 I2RS interims

Flagging configuration state as
ephemeral

• Proposal: Extend “config” yang keyword to
include “ephemeral”.

• Initial discussion: Consider instead a separate
keyword “ephemeral true”.

• (Martin Bjorkland also points out we’re
potentially hitting much of what is in draft-
bjorklund-netmod-operational-00.)

Hierarchy

• Ephemeral configuration may be a child of
persistent configuration. The reverse is not
permitted.

• Operational state whose parent is ephemeral
MUST also be ephemeral.

Netconf Changes

• Announce an ephemeral-config capability.

• Add a new parameter, “filter-ephemeral” to
<get-config> and <get>.

– Consider alternative from draft-bjorklund-
netmod-operational-00. Martin suggests we
shouldn’t overload <get-config>.

Secondary identity

• A property of I2RS ephemeral state that is
stored for each ephemeral configuration state
node.

• Made accessible to the user as a read-only
piece of meta-data. Note that “read-only”
meta-data would be a new construct.

• Carried as a parameter to <edit-config>

Priority

• Similar to secondary-identity, a property of each
ephemeral configuration state node.

• User’s priority is assigned as a new attribute of NACM.
• For new ephemeral nodes, it is assigned the user’s

priority for that node. (NACM may vary it by path.)
• For existing ephemeral nodes, the update is only

permitted if the user’s priority is > the existing node’s
priority (First holds) The node then has this priority.

• Transaction/Commit will fail if the user has insufficient
priority.

• Presented to the user as read-only meta-data.

