
OVERVIEW OF EPHEMERAL STATE
ISSUES - AN INTRODUCTION TO
EPHEMERAL REQUIREMENTS



Use cases for ephemeral state: Disjoint

• • Ephemeral state and configuration state do
not interact with each other; common
protocol operations may retrieve either.

Ephemeral Config

Example use case: A Topology data model that does not
use state from other IGP data models



Use cases for ephemeral state:
Ephemeral refers to config

• Yang constraints such as “must/when” refer
from ephemeral state to config state.

• The reverse is probably never safe. .

Ephemeral Config

Example use case: A dynamically created BGP neighbor
in the Ephemeral datastore uses the Config datastore’s
Autonomous System value.

X Y

Leaf x has a must relationship on y in the config.
State is otherwise disjoint.



Use cases for ephemeral state:
Augmenting

• Rather than “copy and paste” some bit of
related config into an i2rs schema, i2rs
provides an augmentation on configuration
state to provide the i2rs related feature:

Ephemeral

Config

Y

X

Ephemeral node y is a
child of x.
• However, what

happens if x is
deleted?

• What about
consistency between
the two separate
datastores?

Example use case: An
IGP interface has I2RS
state adding a “color”
Traffic Engineering
Attribute



Config
X

Ephemeral

Config

Y

X

Y could overlap X in different datastores in the same
place in the schema. Depending on “priority”, a read
operation on X may return either the config datastore
copy or the ephemeral datastore copy.

Example use case: A static route in the Config’s
datastore could have its nexthop overridden by
dynamic state.

Use cases for ephemeral state:
Overriding/occluding

Ephemeral
Y



draft-ietf-i2rs-ephemeral-state-
reqs-02

Jeffrey Haas Susan Hares

jhaas@pfrc.org shares@ndzh.com



Intent of Ephemeral Requirements

• To attempt to provide concrete examples of
desired I2RS protocol behavior.

• To drive discussion about potential
implementations of that behavior and their
representations in

– I2RS protocol design team

– netconf/restconf and yang.



Ephemeral state Summary

• 13 Requirements for

– persistence (1) ,

– use of constraints with ephemeral (3),

– changes to yang (1),

– minimal set of changes to netconf (1)

– Identifiers (1), Priority & secondary identity (3)

• 7 for PubSub



Persistence

• Ephemeral-REQ-01: I2RS requires ephemeral
state; i.e. state that does not persist across
reboots. If state must be restored, it should be
done solely by replay actions from the I2RS client
via the I2RS agent.

– While at first glance this may seem equivalent to the
writable running datastore in NETCONF, running-
config can be copied to a persistent data store, like
startup config. I2RS ephemeral state MUST NOT be
persisted.



Constraints used in Ephemeral
• Ephemeral-REQ-02: Non-ephemeral state MUST NOT refer

to ephemeral state for constraint purposes; it SHALL be
considered a validation error if it does.

• Ephemeral-REQ-03: Ephemeral state must be able to
utilized temporary operational state which (MPLS LSP-ID or
a BGP IN-RIB) as a constraints.

• Ephemeral-REQ-04: Ephemeral state MAY refer to non-
ephemeral state for purposes of implementing constraints.
The designer of ephemeral state modules are advised that
such constraints may impact the speed of processing
ephemeral state commits and should avoid them when
speed is essential.



Changes to Yang

• Ephemeral-REQ-05: The ability to add on an object (or
a hierarchy of objects) that have the property of
being ephemeral. An object needs to be able to have

(both)
– the property of being writable,
– and the property of the data being ephemeral (or non-

ephemeral).

• Ephemeral-REQ-06: Yang MUST have a way to indicate
in a data model that nodes have the following
properties: ephemeral, writable/not-writable,
operation state /configuration.



Minimal sub-set of changes

• Ephemeral-REQ-07: The minimal set of
changes are: (TBD).

– The minimal set of changes are being discussed in
the I2RS protocol design team.



Identifier Requirements

• Ephemeral-REQ-08:Clients shall have identifiers, and
secondary identifiers.

• Explanation:
– I2RS requires clients to have an identifier. This identifier will be

used by the Agent authentication mechanism over the
appropriate protocol.

– The Secondary identities can be carried as part of RPC or meta-
data.

– The primary purpose of the secondary identity is for traceability
information which logs (who modifies certain nodes). This
secondary identity is an opaque value.



Priority Requirements

• Ephemeral-REQ-09: The data nodes MAY store I2RS client identity
and not the effective priority at the time the data node is stored.
– The I2RS Client MUST have one priority at a time.
– The priority MAY be dynamically changed by AAA, but the exact

actions are part of the protocol definition as long as Collisions are
handled as described in Ephemeral-REQ-10, Ephemeral-REQ-11, and
Ephemeral-REQ-12.

• Ephemeral-REQ-10: When a collision occurs as two clients are
trying to write the same data node, this collision is considered an
error and priorities were created to give a deterministic result.
– When there is a collision, a notification MUST BE sent to the original

client to give the original client a chance to deal with the issues
surrounding the collision. The original client may need to fix their
state.



Priority Requirements

• Ephemeral-REQ-11: The requirement to support multi-headed control is
required for collisions and the priority resolution of collisions. Multi-
headed control is not tied to ephemeral state. I2RS is not mandating how
AAA supports priority. Mechanisms which prevent collisions of two clients
trying the same node of data are the focus.

• Ephemeral-REQ-12: If two clients have the same priority, the architecture
says the first one wins.

– The I2RS protocol has this requirement to prevent was the oscillation between
clients.

– If one uses the last wins scenario, you may oscillate.
– That was WG opinion, but a design which prevents oscillation is the key point.



Transactions

• Ephemeral-REQ-13: Section 7.9 of the I2RS architecture
document states the I2RS architecture does not include
multi-message atomicity and roll-back mechanisms.
– The I2RS client/agent can send multiple operations within one

or more messages.
– Errors with the set of operations in many message, but No

multi-message commands SHOULD cause errors to be inserted
into the I2RS ephemeral data-store.

• Error handling techniques
– Perform all or none
– Perform until error
– Perform and store errors and send (as batch) to

Interim
note:
These
revised
words are
still unclear



Pub/sub Requirements
Link to ephemeral

• PubSub-REQ-1: The I2RS interface SHOULD support user
subscriptions to data with the following parameters: push
of data synchronously or asynchronously via registered
subscriptions.

• PubSSub-REQ-2: Real time for notifications SHOULD be
defined by the data models.

• PubSub-REQ-3: Security of the pub/sub data stream
SHOULD be able to be model dependent.

• PubSub-REQ-4: The Pub/Sub mechanism SHOULD allow
subscription to critical Node Events. Examples of critical
node events are BGP peers down or ISIS protocol overload
bits.



Pub/sub Requirements
Link to ephemeral

• PubSub-REQ-5:I2RS telemetry data for certain protocols
(E.g. BGP) will require a hierarchy of filters or XPATHs. The
I2RS protocol design MUST balance security against the
throughput of the telemetry data.

• PubSub-REQ-6: I2RS Filters SHOULD be able to be dynamic.

• Pub-Sub-REQ-7: I2rs protocol MUST be able to allow I2RS
agent to set limits on the data models it will support for
pub/sub and within data models to support knobs for
maximum frequency or resolution of pub/sub data.



Hierarchy

• Ephemeral configuration may be a child of
persistent configuration. The reverse is not
permitted.

• Operational state whose parent is ephemeral
MUST also be ephemeral.



BACKUP SLIDES



Concrete Proposals made in Past



Flagging configuration state as
ephemeral

• Proposal: Extend “config” yang keyword to
include “ephemeral”.

• Initial discussion: Consider instead a separate
keyword “ephemeral true”.

– (Martin Bjorkland also points out we’re potentially
hitting much of what is in draft-bjorklund-netmod-
operational-00.)



Netconf Changes

• Announce an ephemeral-config capability.

• Add a new parameter, “filter-ephemeral” to
<get-config> and <get>.

– Consider alternative from draft-bjorklund-
netmod-operational-00. Martin suggests we
shouldn’t overload <get-config>.



Secondary identity

• A property of I2RS ephemeral state that is
stored for each ephemeral configuration state
node.

– Made accessible to the user as a read-only piece
of meta-data. Note that “read-only” meta-data
would be a new construct.

– Carried as a parameter to <edit-config>



Priority

• Similar to secondary-identity, a property of each
ephemeral configuration state node.

• User’s priority is assigned as a new attribute of NACM.
• For new ephemeral nodes, it is assigned the user’s

priority for that node. (NACM may vary it by path.)
• For existing ephemeral nodes, the update is only

permitted if the user’s priority is > the existing node’s
priority (First holds) The node then has this priority.

• Transaction/Commit will fail if the user has insufficient
priority.

• Presented to the user as read-only meta-data.


