Namespace Resolution in Future Internet Architectures draft-wang-fia-namespace-00

Jianping Wang, City University of Hong Kong Will Liu, Cedric Westphal, Huawei

> ICNRG Meeting IETF93 – Prague July 2015

Outline

- Draft Overview
- Summary of existing namespace resolutions
- Requirements of an open namespace management system
- Proposed Namespace Management System
- Conclusion

Draft Overview

- Presents the architecture and implementation of an open and flexible namespace resolution mechanism to be used with Fut ure Internet Architectures.
- This resolution mechanism allows the resolution of different n etwork entities and can be adapted to the needs of network, a pplication and service providers alike.

Namespace and Resolution Protocols Are Essential

Namespace

- How are names defined?
- What is the scope of the namespace?

Resolution Policy

- Which namespaces are involved?
- How names are resolved?
- What actions are associated?

Resolution Management

- Where is name resolution done?
- How is the resolution initialized and u pdated?

Summary of Existing Schemes (1)

- Many namespaces in existing and future networks
 - Defined by different entities
 - With various naming styles
 - URL (human readable, hierarchical)
 - Fixed-sized (IP, IP+Port, MAC address, GUID in MobilityFirst)
 - Flexible (XID in XIA)
 - Attribute (SID:PID in PURSUIT, naming in GreenICN)
 - Compression (RoHC)
 - Valid in different scopes
 - Global
 - Regional (e.g., local network in NAT)
 - Two ends of a link (e.g., in RoHC)
 - Single point (e.g., IP routing at individual router)

Summary of Existing Schemes (2)

- Many name resolution policies
 - Different number of namespaces involved
 - Two Namespaces: DNS, NAT, ...
 - Multiple Namespaces: NDN, GreenICN
 - Different resolution directions
 - One-way: DNS, IP Routing, ASP Messaging, MobilityFirst, PURSUIT routing
 - Two-way: NAT, RoHC
 - Sequential: NDN, GreenICN
 - DAG: XIA

Summary of Existing Schemes (3)

- Many name resolution policies
 - Different number of resolution results
 - One-to-one: NAT, RoHC, IP Routing (unicast, single path)
 - One-to-many: DNS, IP Routing (multicast)
 - Different resolution algorithms
 - Exact matching: NAT, RoHC, DNS,
 - Longest matching: IP routing
 - Bloom filter: PURSUIT content routing
 - Different following actions
 - Forwarding: IP routing, NDN routing, PURSUIT content routing, XIA routing
 - Translating/Updating: DNS, NAT, RoHC, MobilityFirst, GreenICN
 - Caching: NDN

Summary of Existing Schemes (4)

- Many name resolution management schemes
 - Location of the resolution
 - Local: NAT, IP routing, NDN routing, XIA routing, PURTSUIT content routing
 - Remote server: DNS, ASP messaging, MobilityFirst, GreenICN, SDN controller
 - Protocol needed
 - Two end points of a link: RoHC
 - Resolution update
 - Single node: NAT gateway (static or manual, dynamic)
 - Hierarchical: DNS servers, SDN (two-level: controller, router)
 - Distributed: Routing protocols (IP, NDN), DHT (MobilityFirst)
 - Two end points of a link: RoHC

Issues of existing namespace resolution sy stems

- Many namespaces, many resolution policies, and many resolution mana gement schemes
- Inflexible routing in a particular domain
- Reduced performance due to name resolution managed by different entities
- Unclear (or inefficient) interoperation among different FIAs

Requirements

- Design a generic namespace management framework
 - Supporting different types of namespaces
 - Supporting different resolution policies
 - Supporting different resolution management schemes
 - Improving flexibility for routing
 - -/ Enabling co-existence and Interoperability
 - For different architectures/protocols/schemes on same physical infrastructure
 - Enhancing security and privacy protection

- Define namespaces and resolution policies flexibly
 - Open and unified APIs
 - Access control

Definable Routing (Continue)

- Define private/anonymous network on public network infrastructure
- Definability

private/anonymous network by namespaces and policies on public network infrastructure

Flexibility

Changing Source/Destination
Name by policies for anonymous
communication

- Security & Privacy
 - Segment-by-segment Communication.
 - Fully control of routing and resolution

Co-existence of different FIAs

Flexible name resolution policy for any particular routing scheme.

Compatibility/Interoperability

- Deploy different network schemes/protocols in a unified frame work
- Example: Interoperability between NDN and MobilityFirst

A possible System Architecture

- Control Plane
 - Register namespaces and resolution policies
 - Define access control polices
- Data Plane
 - Policy execution
 - Filters
 - Actions

Logic/Algorithms

- Namespace looking up
- Longest Matching
- Compression
- Translation
- ...

Define Namespace and Policy

Packet

SourceName DestinationName Data

- Policy
 - Filter
 - The condition of accessing a namespace
 - For a namespace, e.g.: IF (SourceName=="Alice") { Input(); }

Only the packets from Alice can be processed by this namespace.

- The condition of hitting an entity of a namespace
 - For a Entity, e.g.: IF (DestinationName.IndexOf("Bob")!=-1) { Action(); }

When a packet with a destination name contains "Bob", there is lookup matching.

- Action
 - What should be done when a lookup matching has been found (hit a entity)
 - E.g.: ForwardToInterface("Interface_0");

The packet hit this entity will be forwarded to interface "Interface_0"

- What should be done when no lookup matching has been found in the whole namespace
 - E.g.: ForwardToNamespace("PIT");

If there is no entity hit in the current namespace, forward this packet to namespace "PIT"

Define Namespace and Policy

Namespace

- Metadata
 - Name
 - Tag
 - Filter
 - Default action (i.e., action to be done when no lookup matching can be found)
- Entities
 - Name
 - value
 - Action
 - Filter
 - Other extend fields e.g.: status, timestamp ...

Conclusion and Next Steps

- We have introduced a new namepace management system that is compatible with any FIA
 - We believe this is needed to interoperate between the different architectures
- Next steps:
 - Interest from the group? Comments on the group page
 - V1 of the draft after comments
 - Approval by the WG as WG-draft

Extra Slides 20

Future Internet Architectures (FIAs)

MobilityFirst

PURSUIT

XIA

NDN

GreenICN

.

Which one will be the winner?
Or we can let them work together!

Domain Name System (DNS)

- Namespaces
 - URL (global)
 - IP Address (global)
- Resolution policy
 - One-way: URL to IP Address
 - One-to-many mapping
 - One URL to one or multiple IP addresses
- Resolution management
 - Resolution at a DNS server
 - A hierarchical architecture for DNS servers

Network Address Translation (NAT)

- Namespaces
 - Private IP Address and Port
 - Global IP Address and Port
- Resolution policy
 - Bi-directional
 - One-to-one
 - With different restrictions
- Resolution management
 - At a gateway
 - Static
 - Dynamic

IP Routing

- Namespaces
 - IP Address (global)
 - Interface ID (in router)
- Resolution policy
 - One-way: IP address to Interface ID
 - Longest match
 - Following action
 - Forwarding
- Resolution management
 - At router
 - SDN: router + controller
 - Update
 - Distributed: Routing protocols: BGP, OSPF...
 - Centralized (two-level hierarchy): SDN
 - Creation / Update algorithms: Shortest path, QoS, ...

Resolution in Mobile Communication Example: Robust Header Compression (RoHC)

- Namespaces
 - Original Header (local)
 - Compressed Header (local)
- Policy
 - Bi-directional
 - One-to-one
- Management
 - Resolution at individual compressor/decompressor
 - E.g., at two ends of a wireless link
 - Header compression

Naming by Application Service Provider (ASP) Example: Messaging

- Namespaces
 - User ID (global)
 - Device Network Address (NA) (global)
- Resolution policy
 - One-way
 - One-to-one or One-to-many (Skype)
 - Different restrictions:
 - Accessibility verification
 - Management
 - Defined by ASP

MobilityFirst (Destination Resolution)

- Namespaces
 - GUID
 - Network Address (NA)
- Policy
 - One-way: GUID to NA
- Management
 - Resolution at distributed server
 - Resolution servers are chosen by d istributed hash table (DHT)
 - Update
 - Dynamic / Late binding

NDN (Routing for Content Request and Content)

- Namespaces
 - URL-like name (global)
 - Interface ID (local)
 - Cached content ID (local)
- Policy
 - When receives an interest packet
 - Sequential: CS->PIT->FIB
 - When receives a data packet
 - Once: PIT (one-to-many)
- Management
 - Resolution at individual router
 - Update architecture
 - · Local: CS, PIT
 - Distributed: FIB

Internames-Green ICN (Destination Resolution)

Namespaces

- A: Object Name (e.g., URL)
- B: <realm, dst, SD>
- C: <gateway, SD>

Policy

- One-to-one
- One-way
- NRS: A->B
- RRS: B->C (if necessary)

Management

- Name Resolution Service (NRS)
- Routing Resolution Service (RRS)

XIA (Routing)

- Namespaces
 - XID (global)
 - Multiple names are included by using a DAG
 - Interface ID (local)
- Policy (forwarding)
 - One-way: XID to Interface ID
 - A sequence of resolution according to the DAG
- Management
 - Resolution at router

PURSUIT (Content Routing)

- Namespaces
 - FID (Regional, associated with a routing tree)
 - Specifying a set of links by Bloom Filter
 - Interface ID (local)
- Policy (forwarding)
 - One-way: FID to Interface ID
 - One-to-many
- Management
 - FID is calculated by TM