

C-DAX: A Cyber-Secure Data and Control Cloud for Power Grids

Michael Menth

http://kn.inf.uni-tuebingen.de

C-DAX Project

- ► EC FP7-ICT-2011-8 call project
 - C-DAX: Cyber-secure Data And Control Cloud for power grids
- Duration: 2012-10-01 –2015-09-30
- ► Total budget: 4,315,303 Euro
- EU-funding: 2,931,000 Euro
- C-DAX middleware
 - Enables smart grid applications to exchange information securely
 - Implements information-centric networking (ICN) paradigm
 - Supports publish/subscribe across different administrative domains

- Project coordination: iMinds
- Project website: http://www.cdax.eu
- Project partners

One Platform, Multiple Applications

C-DAX Communication Platform

->: Control plane communication

: Data plane communication

Resilience Support Levels: Overview

- Topic data should be highly available
 - Data is stored on two nodes
- Resilience of the infrastructure
 - Each system component is replicated physically
 - Each critical communication path is divided into
 - A path during failure free operation

Four resilience support levels:

Level	Data loss (during failover)	Data delay (during failover)	Complexity
L0	Υ	Υ	Low
L1	Υ	N	Low
L2	N	Υ	Middle
L3	N	N	High

Michael Hoefling, Florian Heimgaertner, Michael Menth, Konstantinos V. Katsaros, Paolo Romano, Lorenzo Zanni, and George Kamel: *Enabling Resilient Smart Grid Communication over the Information-Centric C-DAX Middleware*, in Proceedings of the ITG/GI International Conference on Networked Systems (NetSys 2015), March 2015, Cottbus, Germany

Security Enhancements

General Security Requirements

- Confidentiality and integrity
 - End-to-end security, e.g., IEC 62351
- Availability
 - Prevention of attacks, e.g., DoS attacks, replay attacks, spoofing

C-DAX Security Rationale

- Strong authentication of clients and nodes based on asymmetric cryptography
- Asymmetric cryptography for C-DAX control
- Symmetric cryptography for topic data
- Minimal trust in underlying infrastructure
 - Nodes do not have to trust each other inside C-DAX cloud
 - Clients do not have to trust C-DAX cloud for guaranteed end-to-end security
- ► Flexible match of security parameters to requirements of use cases, e.g., data rates, latency, confidentiality, integrity

Security Features of C-DAX

- End-to-end confidentiality and integrity between C-DAX clients
- Availability of C-DAX infrastructure through resilience and limited exposure through DNs

Scalable key management mechanism

Florian Heimgaertner, Michael Hoefling, Barbara Vieira, Erik Poll, and Michael Menth: A Security Architecture for the Publish/Subscribe C-DAX Middleware, in Proceedings of the IEEE International Workshop on Security and Privacy for Internet of Things and Cyber-Physical Systems (IoT/CPS-Security 2015) collocated with the IEEE International Conference on Communications (ICC 2015), June 2015, London, UK

Interworking with IEEE/IEC Protocols

Problem

- Existing smart grid protocols rely on bidirectional one-to-one communication, e.g., IEEE C37.118, IEC 61850
- C-DAX provides unidirectional manyto-many communication

Solution

- Protocol adaptation layer translates between smart grid protocols and C-DAX
- C-DAX becomes compatible with existing standards

Benefits for Operators

 Hardware and software compliant to existing standards can be used with C-DAX with little configuration changes

Proof-of-Concept Implementation

- Protocol adaptation layer for IEEE C37.118 has been implemented and tested
- Will be used in the field trial

Michael Hoefling, Florian Heimgaertner, Daniel Fuchs, Michael Menth, Paolo Romano, Teklemariam Tesfay, Mario Paolone, Jimmie Adolph, and Vidar Gronas: Integration of IEEE C37.118 and Publish/Subscribe Communication, in Proceedings of the IEEE International Conference on Communications (ICC 2015), June 2015, London, UK

Transparent IP-Tunneling Mode

Motivation

- Support legacy protocols in C-DAX
- Avoid implementation effort for application specific adapter clients
- Re-use C-DAX communication and security infrastructure

Solution

10.0.0.1

Legacy application

- Map point-to-point communication to topic-based communication
 - One topic per tunnel direction

Encapsulate IP packets into C-DAX messages

adapter

C-DAX client

Proof-of-Concept Implementation

- Transparent IP-tunneling adapter
- Uses virtual network interfaces (Linux tun/tap interface)
 - IP packets are handled by userspace application (C-DAX client and tunnel adapter)

Field Trial

Purpose

- Deploy C-DAX software in an existing distribution grid
- Evaluate applicability of C-DAX under realistic conditions
- Show-case several smart grid applications using a common pub/sub middleware

Environment

- MV feeder provided by Alliander
- Leased IP network
- PMUs provided by National Instruments
- RTSE application by EPFL
- PQ application by National Instruments
- C-DAX software

Time plan

- Deployment of PMUs and C-DAX software: Q3 2015
- Scheduled start of field trial: Q3 2015

PMU installation at secondary substation of Alliander

Source: Alliander N.V.

Alliander's MS Livelab

National Instruments' PMU for MV level

Source: National

Prof. Dr. habil. Michael Menth

Full professor (Principal investigator for the University of Tuebingen within C-DAX)

University of Tuebingen Chair of Communication Networks Sand 13, 72076 Tuebingen, Germany

Telephone: +49-(0)7071/29-70505 E-Mail: menth@uni-tuebingen.de http://kn.inf.uni-tuebingen.de/staff/menth

Dipl.-Inform. Michael Hoefling, M.Sc.

Researcher, PhD student (Work package leader for work package "Validation and Performance Evaluation")

University of Tuebingen Chair of Communication Networks Sand 13, 72076 Tuebingen, Germany

Telephone: +49-(0)7071/29-70507 E-Mail: hoefling@uni-tuebingen.de http://kn.inf.uni-tuebingen.de/staff/hoefling

