# NDN protocol development:

status of reference implementations, supporting software releases, open architecture research issues

#### **Alex Afanasyev**

University of California, Los Angeles, NDN team

ICNRG Interim Meeting San Francisco, CA, October 2, 2015

# Progress in the past year

Expand and improve supporting libraries

- One major release and five minor releases
  - next full major release this month
  - http://named-data.net/doc/NFD/current/ releases.html

 Expanded list of supported platforms, new features and bug fixes

# Reference Implementation Status

- Free software approach
- NFD: NDN Forwarding Daemon
  - New flexible packet format based on TLV
  - Modular and extensible design
  - Support for multiple forwarding strategies
- Libraries: full featured implementations in a variety of languages
  - C++ (full + lightweight), Java (se+android), JS (in-browser+nodejs),
     Python
- Apps: <a href="https://github.com/named-data">https://github.com/named-data</a>

| NdnCon     |
|------------|
| ndnrtc     |
| NLSR       |
| repo-ng    |
| ndn-tools  |
| ChronoChat |

Chronochat-js ChronoShare ndn-traffic-generator Federated Wiki ndn-bms ndn-lighting

ndnfs NDNoT ndnrjs Matryoshka ndnstatus NDNVideo Apps (\*) /
+-----+
\ Libraries (LPLG3) /
+-----+
\ NFD (GPL3) /
+-----+

NDNFit

OpenPTrack-NDN

**Building Management** 

ndn-hangman NDNWhiteboard

photoSharing

### Community Involvement

- Mailing lists
  - nfd-dev: 100+ (http://www.lists.cs.ucla.edu/mailman/listinfo/nfd-dev )
  - ndn-interest: 340+ (
     http://www.lists.cs.ucla.edu/mailman/listinfo/ndn-interest)
  - ndnSIM: 300+ (<a href="http://www.lists.cs.ucla.edu/mailman/listinfo/ndnsim">http://www.lists.cs.ucla.edu/mailman/listinfo/ndnsim</a>)
- Code contributors across NDN projects
  - 70+ (many outside of NDN team)
- NDN on Github
  - https://github.com/named-data
  - 20+ forks of NFD, ndn-cxx
  - 48+ forks of ndnSIM
- 1st NDN Hackathon
  - <a href="http://ndncomm.github.io/">http://ndncomm.github.io/</a>
  - 25 participants, 7 projects (out of 19 project proposals)
- NDNComm2015
  - 100+ people from 63 institutions and 13 countries

#### **NDN** Consortium

#### **Founding Universities (8)**

- Colorado State University
- University of Arizona
- University of California, Los Angeles (UCLA)
- University of California,
   San Diego
- University of Illinois,
   Urbana-Champaign
- University of Memphis
- University of Michigan
- Washington University in St. Louis

#### Industry (10)

- Alcatel-Lucent
- Brocade
- Cisco Systems
- Fujitsu Laboratories of America
- Huawei Technologies
- Intel Corporation
- Juniper Networks
- Panasonic Corporation
- Verisign, Inc.
- ViaSat

#### Academic / Non-profit (9)

- Anyang University, Korea
- Northeastern University
- The MITRE Corporation
- Tongji University, China
- Tsinghua University, China
- University of Basel, Switzerland
- University of Maryland,
   College Park
- Université Pierre et Marie Curie Sorbonne Universités, France
- Waseda University, Japan

#### Technical Memos on NDN Architectural Design

- (rev2) Consumer-Producer API for Named Data Networking. ICN'15/NDN-0017
- (rev3) Schematizing and Automating Trust in Named Data Networking. ICN'15 / NDN-0030
- (rev1) Scalable Name-Based Packet Forwarding: From Millions to Billions. ICN'15
- (rev15) NDNLPv2 spec (http://redmine.named-data.net/projects/nfd/wiki/NDNLPv2)
- (rev1) Packet Fragmentation in NDN: Why NDN Uses Hop-By-Hop Fragmentation. NDN-0032.
- (rev1) ICN Packet Format Design Requirements. draft-icn-packet-format-requirements-01.
- (rev4) SNAMP: Secure Namespace Mapping to Scale NDN Forwarding, GI'2015 / NDN-0004
- (rev1) Public Key Management in Named Data Networking. NDN-0029
- (rev4) NFD Developer's Guide. NDN-0021
- (rev1) Fetching content in Named Data Networking with embedded manifests. NDN-0025
- (rev1) NDN Technical Memo: Naming Conventions. NDN-0022
- (rev1) Kite: A Mobility Support Scheme for NDN. NDN-0020
- (rev1) A World on NDN: Affordances & Implications of the Named Data Networking Future Internet Architecture. NDN-0018
- Packet Forwarding Speed vs. Processing: Implementation Tradeoffs in Handling Selectors
- NDN Name Discovery
- LINK description
- Why Variable Length Wire Encoding is Important
- Implicit Digest vs. Content Hash

### FYI: Recent Papers from NDN Team

#### ICN'15

- Scalable Name-Based Packet Forwarding: From Millions to Billions
- Consumer / Producer communication with application level framing in Named Data Networking
- NDN-RTC: Real-time videoconferencing over Named Data Networking
- Schematizing and Automating Trust in Named Data Networking

#### Other

- SNAMP: Secure Namespace Mapping to Scale NDN Forwarding (GI'2015)
- The Story of ChronoShare, or How NDN Brought Distributed Secure File Sharing Back (MASS CCN'15)
- Named Data Networking in Climate Research and HEP Applications (CHEP2015)
- Synchronizing Namespaces with Invertible Bloom Filters (ACNS'15)
- Navigo: Interest Forwarding by Geolocations in Vehicular Named Data Networking (WoWMoM'15)
- http://named-data.net/publications/

# **Active Development**

Weekly code commits at Github



– PyNDN2



### Multi-Platform Suport

- NFD now runs on Android
  - https://github.com/named-data-mobile/NFD-android
  - A few pilot applications
    - Simple game <a href="https://github.com/dchimeraan/ndn-hangman">https://github.com/dchimeraan/ndn-hangman</a>
    - NDN Whiteboard <a href="https://github.com/sumitgouthaman/NDNWhiteboard">https://github.com/sumitgouthaman/NDNWhiteboard</a>
    - Photo sharing app <a href="https://github.com/ohnonoho/photoSharing">https://github.com/ohnonoho/photoSharing</a>











- DD-WRT and OpenWrt
  - Home routers
- Other embedded systems
  - http://redmine.named-data.net/projects/ndn-embedded/wiki



#### **Evaluation Platforms**

- Every release of NFD is tested and deployed on the global NDN testbed.
- For evaluation, users now have a set of choices with different tradeoffs between scale and fidelity
  - NDN Testbed
    - 26 sites in US, China, France, Switzerland, Spain, Norway, Italy, Korea,
       Japan
    - http://named-data.net/ndn-testbed/
  - Open Network Lab, Emulab, ...
    - https://onl.wustl.edu/
  - Mini-NDN
    - https://github.com/named-data/mini-ndn
  - ndnSIM 2.1
    - http://ndnsim.net/2.1/

# Architectural Features Available for Experimentation

- Edge support
  - minimize manual configurations
- NDNLPv2
  - hop-by-hop packet delivery assistance
- Network NACK
  - router-level "no"
- LINK object
  - name referrals ("delegations")

### **Edge Support**

- Autoconfig and local hub discovery
  - Combination of various techniques to automatically discover and connect hosts to NDN testbed.
  - http://named-data.net/doc/NFD/current/manpages/ndnautoconfig.html
  - http://named-data.net/doc/NFD/current/misc/localprefix-discovery.html
- Automatic Prefix Propagation
  - Producer connects to gateway and securely register its content prefixes with the gateway.
  - Needed for the last hop delivery of interests to the producer

#### NDNLPv2: Link Protocol for NDN

- Within one hop, under the NDN Interest/Data layer.
- A set of link services over underlying transport
  - Fragmentation/reassembly
  - Loss detection/recovery
    - done extensive simulations already
  - Link failure detection
  - Network NACK
- Services are optional depending on the type of transport
  - E.g., TCP, UDP, Ethernet







C. Yi, A. Afanasyev, I. Moiseenko, L. Wang, B. Zhang, and L. Zhang, "A Case for Stateful Forwarding Plane," Computer Communications, vol. 36, no. 7, pp. 779–791, 2013

#### **Network NACK**

- When a node cannot fetch the data, generate a NACK to signal the downstream to explore other options.
  - Loop, link failure, no route, congestion, ...
- Return the unsatisfied Interest together with an error code as the NACK
- Downstream node explores other forwarding options.

- http://redmine.named-data.net/projects/nfd/wiki/NDNLPv2
- http://redmine.named-data.net/issues/2520

A. Afanasyev, C. Yi, L. Wang, B. Zhang, and L. Zhang, "SNAMP: Secure Namespace Mapping to Scale NDN Forwarding," in Proceedings of 18th IEEE Global Internet Symposium (GI 2015), April 2015.

# LINK Object

 LINK is a new type of content object, which links one name to another.



- Used to support mobility, and routing scalability.
- Available in NFD/libraries
  - <a href="http://redmine.named-data.net/issues/2587">http://redmine.named-data.net/issues/2587</a>

### Strategy

- Version 4 of the Best Route Strategy
  - Support Interest retransmission with exponential back-off of the suppression interval
  - http://redmine.named-data.net/issues/3156 v4
  - http://redmine.named-data.net/issues/1913 v3
  - http://redmine.named-data.net/issues/1871 v2
- The Access Strategy for end hosts
  - Multicast to learn which host provides the content and remember what has been learned
  - http://redmine.named-data.net/attachments/download/201/accessrouter-strategy 20141220.pptx
- The Adaptive SRTT-based Forwarding strategy for hyperbolic routing
- Support LINK object for mobility and routing scalability

# Security

- Tutorial
  - http://named-data.net/doc/ndn-cxx/current/tutorials/security-library.html
- Schematized trust (see ICN'15 paper)
  - application to NFD, NLSR, and other apps
  - http://named-data.net/doc/ndn-cxx/current/tutorials/security-validatorconfig.html
- PIB service to manage public keys and publish certs
  - http://redmine.named-data.net/projects/ndn-cxx/wiki/PublicKey\_Info\_Base
- Improved signing APIs for better usability
- Signed Interest
  - http://named-data.net/doc/ndn-cxx/current/tutorials/signed-interest.html
- New NDN certificate format
  - http://named-data.net/doc/ndn-cxx/current/tutorials/certificate-format.html
- Experiments with automated testbed certificate issuance

#### **Future Plan**

- Forwarding Strategy
  - new strategies to support IoT, sensors, mobile and DTN environments
  - composable strategy towards the vision of a limited VM
- NDN over constrained communication channels
- Scoped communication
  - within enterprise, homes, etc.
- Hop-by-hop interest limit mechanism for congestion control
- Moving towards the plug-in-play model
  - auto-configuration, self-discovery, self-configuration
- Optimizations and refinements
  - Packet format, packet processing, data structures and algorithms, crypto
- Facilitate usable content-based security
  - authenticity, confidentiality, privacy