
Label Generation Ruleset Specification
draft-ietf-lager-specification-00

Kim Davies  Asmus Freytag

The quick summary

• A standardised approach to expressing registration rules for
labels, known as “label generation rulesets”, or “LGRs”.

• Should allow all existing IDN tables, and known registry
policies, to be reproduced in an objective machine readable
format.

• Vision is anyone dealing with registry policies can implement
an LGR runtime, and then not have to worry about
hardcoding complex validation rules.

• Is not specific to IDNs!

Why? (Part 1)

• Current IDN implementors tend to use “IDN tables” to
define which code points are allowed in domain labels.

• Many registries implementing contextual logic in their
registry backends in a proprietary manner.

• Therefore, even for those that publish IDN tables, it is
difficult to be sure you can replicate/reuse that logic.

Why? (Part 2)

• IDN tables are intended to be shared, e.g. “IDN repository” of
registry IDN tables on IANA website

• Lacks consistent format and difficult to repurpose registry tables.

• RFC 3743 and RFC 4290 are not rich enough to express most
registry policies.

• New gTLD Program has struggled with this too.

• Having a common format would greatly aid in re-use, validation
for table format, etc.

Why? (Part 3)

• Variant program for TLDs needs to use something to
base its work on.

• Goal is to have a master “root LGR” which is the unison
of various language and script specific rulesets.

• Therefore the ability re-use, adapt, merge from LGRs is
a requirement.

The specification

draft-davies-idntables

• XML based description of registry policies for “label
generation”

• Allowable code points for domain registries, contextual
rules, dispositions, etc.

• Co-authored by me and Asmus Freytag (Unicode
Consortium); strong input from IDN variant project
participants

Simple validation checking
Provide label, respond whether that label accords with
the LGR’s rules.

Variant label generation
Take an input label, generate permutations along with
actions to take.

LGRs can be merged

LGRs can be diffed

LGRs can represent complex interdependencies

LGRs have…

• Code point lists, with tagging classes and dispositions

• Variants for specific codepoints, variants are 0..n codepoints. Variants
can be conditional by meeting certain tests.

• Whole label evaluation rules, allowing approaches based on regex like
concepts.

• Ways to leverage all the Unicode properties, to diminish the need to be
derivative.

• Metadata in standard format

• A clear schema so table validity can be automatically checked.

HelloWorld.lgr
Minimal LGR to permit standard LDH labels

<?xml version="1.0" encoding="utf-8"?>
<lgr xmlns="urn:ietf:params:xml:ns:lgr-1.0">
<data>
 <char cp="002D" comment="HYPHEN (-)" />
 <range first-cp="0030" last-cp=“0039" comment=“0-9” />
 <range first-cp="0061" last-cp=“007A” comment=“Latin small letter A-Z” />
</data>
</lgr>

Contextual rules; Derived properties; Regular Expressions
This allows zero-width joiner (U+200D) when following a virama  
(implements IDNA context rule)

<data>
 <char cp="200D" when=“joiner” />
</data>
<rules>
 <class name=“virama” property=“ccc:9” />
 <rule name=“joiner”>
 <look-behind>
 <class by-ref=“virama” />
 </look-behind>
 <anchor />
 </rule>
</rules>

Current status

• Is the standard format for ICANN’s IDN variant project.

• Community “generation panels” are developing their
language/script rules using the draft format. “Integration
panel” will merge these inputs into a common Root LGR.

• Know of some working on implementations, and others
planned

• All known issues either in IETF issue tracker or discussed
recently on lager mailing list

Thank you.

• kim.davies@icann.org

• asmus@unicode.org

mailto:kim.davies@icann.org
mailto:asmus@unicode.org

