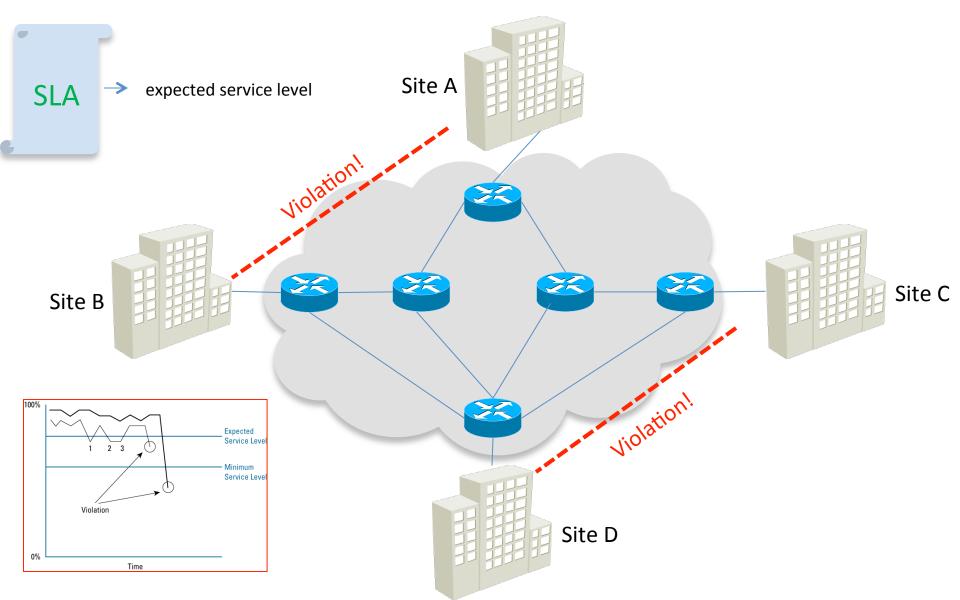
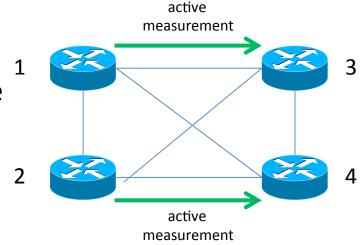
Distributed Detection of SLA Violations

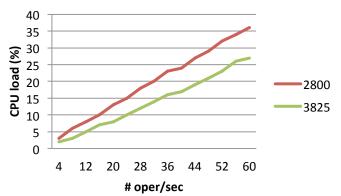
draft-irtf-nmrg-autonomic-sla-violation-detection-01

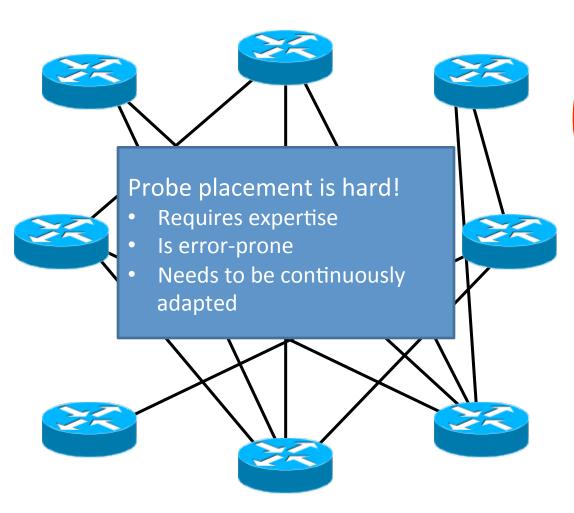

Jéferson Campos Nobre

Lisandro Zambenedetti

Alexander Clemm


Alberto Gonzalez Prieto


Problem definition


Basic Problem

- Maximize the number of detective violations
 - Active measurement is an effective way to detect SLA violations (RFC 6812, RFC 5357)
 - However, active measurement is expensive – CPU etc
 - Cannot measure everything → need to determine probes

"Partial mesh" manual placement

- Determine a coverage objective, ie: 30%.
- Build a traffic matrix to identify the "hottest" points (hint: use NetFlow).
- Take the top 30% and evenly distribute operations

Α	В	С	D	Ε	F
В		5	6	7	5
С	1		7	12	12
D	7	5		5	11
Ε	4	4	12		2
F	3	8	4	18	

Benefits of an Autonomic Solution

Enable a service-level aware, self-monitoring network

- Autonomic solution determines what / when / how to probe without human intervention such that violations are detected with high probability
- Better coverage, violation awareness with less resources
- No dependence on hard-to-obtain human expertise
- Adaptive to dynamic network conditions
- Easy to use

Autonomic Problem formulation

- Given a set of service level objectives ("intent")
- In the context of a network, consisting of
 - n nodes
 - s connections
 - v connections with service level violations
- Maximize v = #detected violations / (#total violations+1)
- Place a set p of probes such that v is covered
 - In the quickest possible time
 - With the least amount of resources
 #probes ≤ α (upper bound on total probes in network)
 - $\#probes(i) \le \beta(i)$ (upper bound on probes per node)
- Various extensions/variations:
 - Discover the "least good"
 - Tradeoff accuracy of probes number of probes

Placement approaches

- Random
- Decision based on local information
- Decision based on local and remote information
- Coordinated decision

Decision based on local information

- Resource constraints analysis and path ranking are performed using local information
- Place probes in iterations
 - Identify set of candidate probes
 - Initial iteration: random placement or based on top destinations
 - Subsequent iterations: time since last observation, closeness to violation determine selection probability
 - Balance coverage over time (round robin) vs scrutiny for likely offenders
- Input:
 - SLO
 - Local observations (measurements, flow)

```
Algorithm 2 LocalInfoPlace(\alpha, \beta, staticweigh[], path[])
  N \leftarrow GetNumberEdges(path[])
  Rc \leftarrow min(\beta, \alpha/N)
  M \leftarrow min((Rc - GetNumberActiveProbes()), SizeOf(path[]))
  for t = 1 \rightarrow Sizeof(path[]) do
     path[t][Wu] \leftarrow GetUser(path[t])
    path[t][Wtl] \leftarrow GetTrafLocal(path[t])
     path[t][Wll] \leftarrow GetLabelLocal(path[t])
    t \leftarrow t + 1
  end for
  SortDesc(path[], key \leftarrow (staticweigh[Wu] * path[][Wu]/\Sigma path[][Wu]) +
  (staticweigh[Wtl] * path[][Wtl]/\Sigma path[][Wtl]) + (staticweigh[Wtl] *
  path[[Wll]/\Sigma path[[Wll])/(\Sigma staticweight[]))
  for i = 1 \rightarrow M do
     DeployProbe(path[i])
     i \leftarrow i + 1
  end for
```

Extensions

- Decision based on local + remote information
 - Take into account results obtained from peers in previous cycle
 - Destinations for which violations are detected from one node may be strutinized more closely by others
- Coordinate probing
 - Avoid duplicate routine probing of same destinations for greater coverage in same cycle
 - Nodes exchange what they measure (best effort, gossiping)
- Identify correlated peers for better coordination
 - Weigh information from nodes that are "similar" to you
 - In terms of observations similar PIN and other characteristics
 - Assess, discover, validate if a peer is correlated
- Note: Inter-peer communication leverages Autonomic Control Plane

Comparison with current solutions

- No standardized solution for distributed autonomic detection of SLA violations
- Current solutions usually restricted to ad hoc scripts running on a per node fashion to automate some administrator's actions
- Some proposals for passive probe activation (e.g., DECON and CSAMP), but without the focus on autonomic features
- Barford et al. (INFOCOM 2009) → Detection and localization of links which cause anomalies along a network path
- Nobre et al. (CNSM 2012, ICC 2013, AINA 2014) →
 Utilization of P2P technology embedded in network
 devices to improve probe activation decisions using
 autonomic loops

Related IETF Work

- Large-Scale Measurement of Broadband Performance (LMAP) WG
- AN solution relevant for LMAP → SLA violation screening
- Solution to decrease the workload of human administrators in service providers → probably highly desirable

IP Flow Information Export (IPFIX) WG

- AN solution extension for passive measurement probes (i.e., metering exporters)
- Flow information used in the decision making of probe activation

Application Layer Traffic Optimization (ALTO) Working Group

 Definition of the topology regarding the network devices which exchange measurement data

Security Considerations

Possible Approaches

- Bootstrapping of a new device → homenet approach [draft-behringer-homenet-trust-bootstrap]
- Measurement data exchange → signed and encrypted among devices
- Sensible information about network infrastructures

Possible Attacks

- Denial of service (DoS) attacks → activation of more local probe than the available resources allow
- Results could be forged by a device (attacker) in order to this device be considered peer of a specific device (target)
 → to gain information about a network infrastructure

Outlook

• Revision 02