
Memory-Hard Functions

Joël Alwen – IST Austria

Theory: Quo Vadis?

Goal 1: Inform future research direction aiming it in a “useful” direction.

Goal 2: Raise awareness of potential implications of recent results for Password-
hashing standardization.

Some example questions to keep in mind…
1. Computational Model: Too weak / strong for security statements / attacks?

If so what is wrong?
2. Complexity Measures: Too weak / strong for security statements / attacks?
3. Statements: Are the type of statements being proven relevant to practice?

What more would we like to know?

MHF a la Percival

• Observation: Computation is cheaper for custom hardware (e.g.
ASICs) then general purpose CPUs.

• Goal: Functions which require as much memory as possible for a
given number of computational steps even in parallel.
⟹ Decrease “evaluations/second per dollar” advantage of ASICs.

• Recall: Area x Time (AT) complexity of a circuit evaluating f ≈ dollar
cost per unit of rate (rate = # of f evaluations / sec).

• Percival: Since high speed memory is expensive in circuits replace
“area” with “space” (i.e. memory).

MHF a la Percival

Definition [Per09]:
An MHF is a function f with hardness parameter n such that fn:

1. can be computed on a Random Access Machine (RAM) in T*(n) time.

2. can not be computed on a Parallel RAM (PRAM) with S(n) space and
processors and T (n) time such that T(n) x S (n) = O(n2-c) for some c > 0.

Data-(in)dependence

• Is the honest evaluation algorithms memory access pattern input-
dependent?
• Yes: data-dependent MHF (dMHF). Example: scrypt, Argon2d.

• No: data-independent MHF (iMHF). Example: Argon2i, Balloon Hashing.

iMHF Advantage: Implementations easier to secure against certain
timing attacks.

Overview

1. Intuitive goals of an MHF.

2. Theory for proving security.

3. Attacking an MHF.

Computational Model

Problem: Proving complexity lower-bounds is hard.

Fortunately almost all proposed MHFs based on compression functions.

Idea: Use (Parallel) Random Oracle Model.

Parallel Random Oracle Model

• Computational Model: PROM
• Algorithms A invoked iteratively.

• At iteration i do:
1. Get input state si-1 (state = arbitrary bit-string).

2. Perform arbitrary computation.

3. Make one batch of queries to H . (i.e. make parallel queries.)

4. Perform arbitrary computation.

5. Output new state si.

• Set s0 to be the input to the computation.

• Repeat until A produces a special output state sz = result of computation.

Parallel Random Oracle Model

Intuition: Good for proving security because…

1. Rather permissive ⇒ security proofs carry more weight.

• Arbitrary non-RO dependent computation allowed for free at each step.

• Memory only measured between calls to RO.

• Any PRAM algorithm is a PROM algorithm (at no added cost).

2. Proving exact lower-bounds with reasonable constants is tractable.

ST-Complexity

• Computational Model: PROM
• Algorithms A invoked iteratively.
• At iteration i do:

1. Get input state si-1 (state = arbitrary bit-string).
2. Perform arbitrary computation.
3. Make one batch of queries to H . (i.e. make parallel queries.)
4. Perform arbitrary computation.
5. Output new state si.

• Repeat until A produces a special output state sz = result of computation.

• Cost(execution) := max

𝑖∈[𝑧]
𝑠𝑖 × 𝑧

Sanity check? “Cost(execution) is high ⇒ AT(execution) is high

 ⇒ expensive to implement in ASIC or FPGA.”

bit length largest state

computation time

ST-Complexity of a Function

• Complexity of an algorithm A on input x:

ST(A,x) ≥ c  Pr[ST(exec(AH(x)) ≥ c] ≥ 1- negligible

over the choice of RO.

• Complexity of a function fH:

ST(f) = minA,x { ST(A,x) }

minimum over all alg. A and inputs x computing f(x).

Intuition: ST complexity of the
best algorithm computing f

on its favorite input x.

Intuition: “On input x
algorithm A almost

always runs with ST-
complexity at least c.”

Amortized and Parallelism

• Problem: for parallel computation ST-complexity can scale badly in the number of
evaluations of a function.

In fact ∃ function f (consisting of n RO calls) such that: 𝑆𝑇 𝑓× 𝑛 = 𝑂(𝑆𝑇 𝑓)

time

sp
ac

e S1

T1

ST1 = S1 × T1 ≈ S3 × T3 = ST3

S3

T3

cost of computing
f once

cost of computing
f three times

Amortized ST-Complexity of a Function

• Amortized ST-complexity of a function f

aST(f) = min
𝑚∈ℕ

𝑆𝑇 𝑓×𝑚

𝑚

• Sanity check? “If aST(f) is large ⟹ Implementing brute-force attack in
an ASIC is expensive.”

Intuition: “The ST-
complexity per I/O pair of

the best evaluation
algorithm for f running on its

favorite set of inputs.”

Examples of Results

• Argon2i (and Balloon Hashing) security proofs:
• For any choice of mem-cost σ and time-cost τ = 1

aST(Argon2iσ, τ) ≥ Ω σ1.666

with probability at least 1-o(σ-3) over choice of RO and salt.

• Construct an iMHF fn with:
1. fn computable in n Time and n Space in (sequential) ROM.

2. 𝑎𝑆𝑇 𝑓𝑛 = Ω
𝑛2

log 𝑛
 in the PROM for all “reasonable” adversaries.

“completeness”

“security proof”

Recall: In practice
σ≈224 for 1GB of

memory ⟹ σ-3 ≈2-68

Note: larger τ can
only give worse

complexity because

Overview

1. Intuitive goals of an MHF.

2. Theory for proving security.

3. Attacking an MHF.

When is an Evaluation Algorithm an “Attack”?

Intuitive Answer: An evaluation algorithm A is an “attack” if it has lower
complexity then the honest algorithm N.

More fine grained: Quality(A) = complexity(A) / complexity(N).

But which “complexity”?

• aST considers only memory. What about cost of implementing RO?

• aST ≈ cost of building ASIC. What about cost of running device?

 Two Stricter Complexity Measures

1) Amortized-Area/Time Complexity (a-AT) ≈ cost of building ASIC.
• Area: accounts for memory needed on chip and RO cores.

2) Amortized-Energy (aE) Complexity ≈ cost of running ASIC.
• Accounts for electricity consumed while storing values and RO evaluations.

amortized-AT Complexity

• Recall PROM: At iteration i make batch of queries qi and store state si.

• Initial Idea: aAT(execution) := maxi(|si|) + maxj(qj).

of RO cores
needed to run

execution.

of memory
cells needed to
run execution.

amortized-AT Complexity

• Recall PROM: At iteration i make batch of queries qi and store state si.

• Initial Idea: aAT(execution) := maxi(|si|) + maxj(qj).

• Problem: Storing 1-bit requires much less area then implementing,
say, SHA1.

• Solution:

“Core-memory area ratio” R := area(1-bit-storage) / area(RO)

• Parametrized Complexity:

aATR(execution) := maxi(|si|) + R*maxj(qj)

Energy Complexity

• Intuition: Only pay for memory that is being actively used.

• Idea: Define the complexity to be area under the “memory curve”.

iterations

sp
ac

e

m

t

ST Cost Cumulative Cost

iterations

sp
ac

e ↦

Energy Complexity

• Similarly for RO calls: Only pay for actually making a call.

• Unit of time: “tock” = time it takes to evaluate the RO.

• Unit of measure: milli-Watt-tock (mWt) = Electricity required to store
1-bit for one tock.

• “Core-memory energy ratio” R’ = mWt requires to evaluate the RO on
one input.

aER’(execution) := 𝑠𝑖 + 𝑅′ × |𝑞𝑖|

Asymptotic Example: Argon2i

• [AB16] For mem-cost σ and time-cost τ such that σ × τ =n

aATR(Argon2i) = O 𝑛1.75 log 𝑛 + 𝑅𝑛1.25

 aATR(Honest-Alg) = Ω
𝑛2

τ
+ 𝑅𝑛

on expectation over the choice of salt and RO.

• Same for energy complexity.
• Similar (or stronger) asymptotic attacks for Catena-BRG, Catena-DBG,

Balloon Hashing 1, 2 & 3, Lyra2, Gambit, Rigv2.

Asymptotic Example: General Upper-Bound

• Any MHF making n calls to a RO has complexity

aATR(Argon2i) = O
𝑛2

log 𝑛
+ 𝑅 × 𝑛

⟹ At least in principle Percival’s goal of n2 is impossible for an iMHF.

Exact Example: Argon2i

• For mem-cost σ and time-cost τ such that σ × τ = n

aATR(Argon2i) ≤ 2𝑛1.75 5 +
log 𝑛

2
+ τ +

𝑅

𝑛.75
+

𝑅

𝑛.5
+
2𝑅

𝑛

• Similar for aER’(Argon2i)

Exact Example: Argon2i

• What does this mean for standardizing Argon2i?

• Some arguments for “This is only a theoretical attack.”
1. aAT complexity doesn’t charge for computation not involving a call to the

RO so real complexity may be far bigger.

2. Setting n=224, R=3000 and τ ≥ 2 gives worse complexity than honest alg.

3. It needs unrealistic amounts of parallelism.

• First: besides calling RO practically no further computation done (In
fact: potentially less than honest algorithm…)

Exact Example: Argon2i

• Second: Set n=224, R=3000 and τ ≥ 2 then this is not an attack.

• Conceptually: By increasing τ we increase computation while keeping
memory the same. Intuitively it becomes “less memory-hard”.

• No attempt has been made to optimize:
• for specific parameter ranges

• minimizing exact security (vs. asymptotic)

1GB Mem
Passes over

memory

Optimizing Analysis for Concrete Parameters

Argon2: indegree δ = 2

• For 1GB memory (n=224)
actually need τ ≥ 6.

• For each quadrupling of
memory need 1 more
pass on memory.

Further optimizations of
the analysis possible?
Most likely…

Third: Can Actually Build This Attack?

• Example: Compute 212 instances in time 225.

• Recall: In Argon2i RO = Blake-512 ≈ .1 mm2
.

• Layout: 1 “big” ASIC + 256 “light” ASICs.

• Big ASIC: 212 Blake-512 Cores ≈ 410 mm2
.

• Total memory on device ≈ 50 GB.

• These aren’t unrealistic requirements for an
attacker with decent budget...

Conclusions

Argon2i

• In it’s current form attack is neither “apocalyptic” nor “only theoretical”.

• Could it improve: my opinion is “very likely yes” both asymptotically and exact.
• See history of block ciphers and hash functions. Attacks tend to improve…

• What else could we even use?
• Balloon Hashing?
• Something new?

Theory: Quo Vadis?

• You tell me!
• What do you think of the PROM?
• How about aAT and Energy complexity?
• Are the statements being proven somewhat meaningful?
• What else could theory try to consider?

Questions? Comments?

