Memory-Hard Functions

Joél Alwen — IST Austria

Theory: Quo Vadis?

Goal 1: Inform future research direction aiming it in a “useful” direction.

Goal 2: Raise awareness of potential implications of recent results for Password-
hashing standardization.

Some example questions to keep in mind...

1. Computational Model: Too weak / strong for security statements / attacks?
If so what is wrong?

2. Complexity Measures: Too weak / strong for security statements / attacks?

3. Statements: Are the type of statements being proven relevant to practice?
What more would we like to know?

MHF a la Percival

e Observation: Computation is cheaper for custom hardware (e.g.
ASICs) then general purpose CPUs.

* Goal: Functions which require as much memory as possible for a
given number of computational steps even in parallel.

— Decrease “evaluations/second per dollar” advantage of ASICs.

e Recall: Area x Time (AT) complexity of a circuit evaluating f = dollar
cost per unit of rate (rate = # of f evaluations / sec).

* Percival: Since high speed memory is expensive in circuits replace
“area” with “space” (i.e. memory).

MHF a la Percival

Definition [Per09]:
An MHF is a function f with hardness parameter n such that f,:
1. can be computed on a Random Access Machine (RAM) in T*(n) time.

2. can not be computed on a Parallel RAM (PRAM) with S(n) space and
processors and T (n) time such that T(n) x S (n) = O(n%*) for some ¢ > 0.

Data-(in)dependence

* |s the honest evaluation algorithms memory access pattern input-
dependent?
* Yes: data-dependent MHF (dMHF). Example: scrypt, Argon2d.
* No: data-independent MHF (iMHF). Example: Argon2i, Balloon Hashing.

IMHF Advantage: Implementations easier to secure against certain
timing attacks.

Overview

1. Intuitive goals of an MHF.

2. Theory for proving security.
3. Attacking an MHF.

Computational Model

Problem: Proving complexity lower-bounds is hard.
Fortunately almost all proposed MHFs based on compression functions.

|dea: Use (Parallel) Random Oracle Model.

Parallel Random Oracle Model

 Computational Model: PROM
* Algorithms A invoked iteratively.

* At iterationido:

Get input state s, ; (state = arbitrary bit-string).

Perform arbitrary computation.

Make one batch of queries to #. (i.e. make parallel queries.)
Perform arbitrary computation.

5. Output new state s,.

* Set s, to be the input to the computation.
* Repeat until A produces a special output state s, = result of computation.

=

Parallel Random Oracle Model

Intuition: Good for proving security because...

1. Rather permissive = security proofs carry more weight.
* Arbitrary non-RO dependent computation allowed for free at each step.
 Memory only measured between calls to RO.
* Any PRAM algorithm is a PROM algorithm (at no added cost).

2. Proving exact lower-bounds with reasonable constants is tractable.

ST-Complexity

 Computational Model: PROM
* Algorithms A invoked iteratively.

e Atiterationjdo:
1. Getinputstate s , (state = arbitrary bit-string).
2. Perform arbitrary computation.
3. Make one batch of queries to #. (i.e. make parallel queries.)
4. Perform arbitrary computation.
5. Output new state s,.
* Repeat until A produces a special output state s, = result of computation.

y COSt(exeCUtion) := m[a)](lsll X Z D \ _ Computatlon t|me
le|z

"~ bit length largest state

Sanity check? “Cost(execution) is high = AT(execution) is high
= expensive to implement in ASIC or FPGA.”

ST-Complexity of a Function

* Complexity of an algorithm A on input x:
ST(A,x) = c < Pr[ST(exec(A"(x)) = c] = 1- negligible
over the choice of RO.

Intuition: “On input x
algorithm A almost
always runs with ST-

complexity at least c.”

e Complexity of a function f":
ST(f) = min, , { ST(AX) }
minimum over all alg. A and inputs x computing f(x).

Intuition: ST complexity of the
best algorithm computing f
on its favorite input x.

Amortized and Parallelism

* Problem: for parallel computation ST-complexity can scale badly in the number of
evaluations of a function.

()}
(% STl = X ~ X = ST3
(@
) / \
cost of computing cost of computing
time fonce f three times

In fact 3 function f (consisting of n RO calls) such that: ST(fX‘/ﬁ) = 0(ST(f))

Amortized ST-Complexity of a Function

* Amortized ST-complexity of a function f Intuition: “The ST-
complexity per I/O pair of
the best evaluation
algorithm for f running on its

favorite set of inputs.”

aST(f) = min ST

meN m

 Sanity check? “If aST(f) is large = Implementing brute-force attack in
an ASIC is expensive.”

Examples of Results

* Argon2i (and Balloon Hashing) security proofs:
* For any choice of mem-cost 6 and time-costt=1
aST(Argon2i;) = ()(c166¢)
with probability at least 1-o(o3) over choice of RO and salt.

\ Recall: In practice

0=224 for 1GB of

Note: larger t can
only give worse
complexity because

memory = o3 ~2-68

L “completeness”

) in the PROM for all “reasonable” adversaries.

“security proof”

* Construct an iIMHF f_ with:
1. f,computable in n Time and n Space in (sequential) ROM.

2. aST(fn)=Q(2

n

logn

Overview

1. Intuitive goals of an MHF.

2. Theory for proving security.
3. Attacking an MHF.

When is an Evaluation Algorithm an “Attack™?

Intuitive Answer: An evaluation algorithm A is an “attack” if it has lower
complexity then the honest algorithm N.

More fine grained: Quality(A) = complexity(A) / complexity(N).
But which “complexity”?

e aST considers only memory. What about cost of implementing RO?
e aST = cost of building ASIC. What about cost of running device?

Two Stricter Complexity Measures

1) Amortized-Area/Time Complexity (a-AT) = cost of building ASIC.
e Area: accounts for memory needed on chip and RO cores.

2) Amortized-Energy (aE) Complexity = cost of running ASIC.
* Accounts for electricity consumed while storing values and RO evaluations.

amortized-AT Complexity

* Recall PROM: At iteration i make batch of queries g, and store state s..
* Initial Idea: aAT(execution) := max(|s;|) + max;(q;).

SN

of memory
cells needed to
run execution.

of RO cores
needed to run
execution.

amortized-AT Complexity

* Recall PROM: At iteration i make batch of queries g, and store state s..
* Initial Idea: aAT(execution) := max(|s;|) + max;(q;).

* Problem: Storing 1-bit requires much less area then implementing,
say, SHAL.

* Solution:
“Core-memory area ratio” R := area(1-bit-storage) / area(RO)
* Parametrized Complexity:
aATg(execution) := max(|s;|) + R*max(q;)

Energy Complexity

* Intuition: Only pay for memory that is being actively used.
* |dea: Define the complexity to be area under the “memory curve”.

ST Cost Cumulative Cost

space
space

iterations iterations

Energy Complexity

e Similarly for RO calls: Only pay for actually making a call.
 Unit of time: “tock” = time it takes to evaluate the RO.

* Unit of measure: milli-Watt-tock (mWt) = Electricity required to store
1-bit for one tock.

e “Core-memory energy ratio” R” = mW1t requires to evaluate the RO on
one input.

aE.(execution) := Y|s;| + R X |qi]

Asymptotic Example: Argon?2i
* [AB16] For mem-cost o and time-cost t such that o x T =n
aAT(Argon2i) = 0(n17°>logn + Rnt%>)
2
aAT,(Honest-Alg) = () (n— + Rn)
T
on expectation over the choice of salt and RO.

* Same for energy complexity.

 Similar (or stronger) asymptotic attacks for Catena-BRG, Catena-DBG,
Balloon Hashing 1, 2 & 3, Lyra2, Gambit, Rigv2.

Asymptotic Example: General Upper-Bound

* Any MHF making n calls to a RO has complexity

n2

aAT.(Argon2i) = O(+ R X n)

logn

= At least in principle Percival’s goal of n? is impossible for an iMHF.

Exact Example: Argon?2i

e For mem-cost o0 and time-cost Tt such that o xt=n

aAT(Argon2i) < 2nt7> (5 1 0BT R4 = ZR)

+T+—t+—+=

n-75 n.s n

* Similar for aEg.(Argon2i)

Exact Example: Argon?2i

* What does this mean for standardizing Argon2i?

* Some arguments for “This is only a theoretical attack.”

1. aAT complexity doesn’t charge for computation not involving a call to the
RO so real complexity may be far bigger.

2. Setting n=2%%, R=3000 and t > 2 gives worse complexity than honest alg.
3. It needs unrealistic amounts of parallelism.

* First: besides calling RO practically no further computation done (In
fact: potentially less than honest algorithm...)

Exact Example: Argon?2i

» Second: Set n=2%4, R=3000 and t = 2 then this is not an attack.

e Conceptually: By increasing t weLincrease computation while keeping
memory the same. Intuitively it becomes “less memory-hard”.

* No attempn madee:

* for specific parameter ranges
* minimizing exact security (vs. asymptotic)

Optimizing Analysis for Concrete Parameters

Argon2: indegree 6 = 2

* For 1GB memory (n=2%%)
actually need t > 6.

* For each quadrupling of
memory need 1 more
pPass on memory.

Further optimizations of
the analysis possible?

Most likely...

Quality

6]

Equality
ATquality
b =2 =1
d =2 7T =23

214 218 222 22(‘1 2:‘5{] 234

Memory Parameter n

(a) Argon2i and SB

Third: Can Actually Build This Attack?

* Example: Compute 212 instances in time 2%°.

e Recall: In Argon2i RO = Blake-512 = .1 mm? ‘&=

» Layout: 1 “big” ASIC + 256 “light” ASICs. |

e Big ASIC: 212 Blake-512 Cores = 410 mm?* >

* Total memory on device = 50 GB. %
&

* These aren’t unrealistic requirements foran —
attacker with decent budget... >l

Figure 2: Argon2i: Attack Architecture

Conclusions

Argon2i
* Init’s current form attack is neither “apocalyptic” nor “only theoretical”.

e Could it improve: my opinion is “very likely yes” both asymptotically and exact.
» See history of block ciphers and hash functions. Attacks tend to improve...

* What else could we even use?
e Balloon Hashing?
* Something new?

Theory: Quo Vadis?

* You tell me!
* What do you think of the PROM?
* How about aAT and Energy complexity?
* Are the statements being proven somewhat meaningful?
* What else could theory try to consider?

Questions? Comments?

