
Design Principles
for Named Data Networking

Work-in-progress by the NDN Project Team

ICNRG Interim Meeting, Buenos Aires
April 3, 2016

Purpose

• Clarify overarching (and evolving) perspective that is driving NDN
architectural design, application experimentation, and other research.
Motivated by discussion on different decisions on the protocol format.

• Respond to community requests for more background on design choices,
and opportunities for constructive feedback.

• Sketch distinctions with other design choices in ICN research.

http://named-data.net/project/ndn-design-principles/

4/3/16 NDN Design Principles 2

Approach

• Work in progress to explain how our protocol decisions are made.
• Feedback is welcome.

• Flexible definition of principles, for now.
• Principles, goals, strategies.

• Perhaps more principles to come, of different types.
• These are not quite application design principles or guidelines;

they focus on protocol decisions.

• Note: Largely by others. Some of my comments / highlights in blue.

4/3/16 NDN Design Principles 3

Summary

• Universality

• Data-Centricity and Data Immutability

• Securing Data Directly

• Hierarchical Naming

• In-Network Name Discovery

• Hop-by-Hop Flow Balance

44/3/16 NDN Design Principles

Universality
NDN should be a common network protocol for all applications and
network environments.

• Applications and network environments that NDN should support include but
not limited to:
• today’s infrastructure-based communication (Web, Youtube, real-time

conferencing, etc.)
• ad hoc with and without infrastructure communication (IoT applications, wireless

mesh networks, vehicle-to-vehicle networking, vehicle-to-vehicle-to-infrastructure,
etc.)

• DTN-style communication, communication over intermittent and disruptive links
(first responder environments), application using unidirectional links (e.g., satellite)

• future application environments that we do not know at this time (as what
happened to IP)

54/3/16 NDN Design Principles

Universality
NDN should be a common network protocol for all applications and
network environments.

• Therefore, NDN protocol and NDN packet format should support wide range
of applications, from constrained (IoT) environments to big data science
applications:
• NDN packet format should be flexible and extensible.
• NDN protocol and packet format should support protocol evolution without flag

days: no fixed parts or fixed-length fields in the header.
• The core network protocol operations should not depend on clock synchronization.

64/3/16 NDN Design Principles

Universality
NDN should be a common network protocol for all applications and
network environments.

• Motived by success of IP.
• Simplest design choice.
• Hard to draw useful boundaries given rapidly evolving landscape.

• Consider IoT - related reading:
W. Shang, A. Bannis, T. Liang, Z. Wang, Y. Yu, A. Afanasyev, J. Thompson,
J. Burke, B. Zhang, L. Zhang. “Named Data Networking of Things.” 1st
IEEE Intl. Conf. on Internet-of-Things Design and Implementation (IoTDI),
April 4-8, 2016, Berlin, Germany.

74/3/16 NDN Design Principles

Universality
Application example
• IoT + composable media

= mobile augmented reality.

4/3/16

Gandhi, Vineet, and Rémi Ronfard. "A
Computational Framework for Vertical Video
Editing." Eurographics Workshop on Intelligent
Cinematography and Editing. 2015.

The Wilderness Downtown

Data-Centricity and Data Immutability
NDN should fetch uniquely named, immutable “data packets” requested
using “interest packets”.

• NDN protocol and packet format should include only elements directly
related to data, i.e., universally required, needed, and meaningful in all
communication environments.

• Other elements needed in specific environments (e.g., in today’s
infrastructure-based Internet) should go to the network adaptation layer(s).

94/3/16 NDN Design Principles

Data-Centricity and Data Immutability
NDN should fetch uniquely named, immutable “data packets” requested
using “interest packets”.

• Data packet immutability allows disambiguation of coordination in distributed
system that may not be always connected.

• Applications can make changes to the communicated content by creating
new versions of immutable data packets.

104/3/16 NDN Design Principles

Data-Centricity and Data Immutability
NDN should fetch uniquely named, immutable “data packets” requested
using “interest packets”.

• Suggested reading:

Helland, Pat. "Immutability changes everything." Queue 13.9 (2015): 40.

114/3/16 NDN Design Principles

Data-Centricity and Data Immutability

Application example
• Networks of diverse and intermittent

links.
• Community-based mesh networks
• Vehicular networking.

124/3/16 NDN Design Principles

Ad-hoc / Mule

Infrastructure

Securing Data Directly
Security should be the property of data packets, staying the same
whether the packets are in motion or at rest.

• Directly secured and uniquely named data removes the requirement for
direct channels between communicating ends. [And dependence on channel
security.]

• It enables asynchronous production and consumption of named and secured
data, e.g., using in-network caches and managed repos.

134/3/16 NDN Design Principles

Securing Data Directly
Security should be the property of data packets, staying the same
whether the packets are in motion or at rest.

• Consumers should be able to validate individual data packets. Ideally, each
packet should be verifiable on its own.

• As an engineering optimization, packets can be made verifiable in the
context of others, provided that the context can be inferred from the data
packet itself (its name or information in signature field).

144/3/16 NDN Design Principles

Securing Data Directly
Security should be the property of data packets, staying the same
whether the packets are in motion or at rest.

• Listserv: Why not explicitly discuss privacy (or confidentiality) as a principle
here?

• Defer discussion to privacy part of the afternoon.

154/3/16 NDN Design Principles

Securing data directly
Application example
• Life-long health data owned by the individual

– Open mHealth.

164/3/16 NDN Design Principles

Linq

Hierarchical Naming
Packets should carry hierarchical names to enable demultiplexing and
provide structured context.

• Reasonable model for many applications.
• Name hierarchy provides context to implement and enforce various security

models, i.e., giving structured restrictions on which keys can sign which
data.

• Hierarchical names allow “flat” naming models, if needed/desired by
applications.

174/3/16 NDN Design Principles

Hierarchical Naming

“Empirically, a large proportion of the complex systems we observe in nature
exhibit hierarchic structure. On theoretical grounds we could expect complex
systems to be hierarchies in a world in which complexity had to evolve from
simplicity. In their dynamics, hierarchies have a property, near-decomposability,
that greatly simplifies their behavior.”

“The Architecture of Complexity” Herbert A. Simon, Proceedings of the
American Philosophical Society, Vol. 106, No. 6., Dec. 12, 1962, pp. 467-482.

184/3/16 NDN Design Principles

Hierarchical Naming

Application example
• Media, cyberphysical systems, etc.

194/3/16 NDN Design Principles

DASH over CCN, Lederer, ICNRG / IETF 87

Aleph

UCLA

Dentistry Franz_Hall

A3-063 83-055 C417 A173

sensor1 sensor2 sensor1 sensor2 sensor1 sensor2 sensor1 sensor2

BMS gateway node …

Testbed

Browser
consumer node

Testbed nodes

Mini-ndn nodes

Visualization nodes

BMS gateway nodes

In-Network Name Discovery
Interests should be able use incomplete names to retrieve data packets.

• A consumer may not know the complete network-level name for data, as
some parts of the name cannot be guessed, computed, or inferred
beforehand.

• Particularly true for dynamic data.

• Once initial data is received, naming conventions can help determine
complete names of other related data
• majority of interests will carry complete names
• in-network name discovery expected to be used to bootstrap communication

204/3/16 NDN Design Principles

In-Network Name Discovery
Interests should be able use incomplete names to retrieve data packets.

• Support dynamic production of immutable data.

• Multi-producer, multi-consumer scenario – new application scenarios with
less emphasis on service infrastructure to achieve multiple party
communication.

214/3/16 NDN Design Principles

In-network Name Discovery

Application example
• Streaming sensor data, smart homes, video,

versioned content.
• Same producers for real-time and historical data.
• Balance application benefits with network

performance.

224/3/16 NDN Design Principles

Hop-by-Hop Flow Balance
Over each link, one interest packet should bring back no more than one
data packet.

• Hop-by-hop flow balancing enables each node to control load over its links.
• By deciding to sending interest over a link, router commits bandwidth for the

returned data.
• By limiting the number of interests sent, each router and client node in the

network control how much data it will receive.

234/3/16 NDN Design Principles

Hop-by-Hop Flow Balance
Over each link, one interest packet should bring back no more than one
data packet.

• In a multi-input, multi-output mesh network, end-to-end congestion control
cannot simultaneously achieve both
1. no congestion over any link, and
2. max. possible utilization of all links.

244/3/16 NDN Design Principles

Hop-by-hop flow balance

Application example
• Real-time video –

current work on NDN-RTC.

254/3/16 NDN Design Principles

Next

• Continued iteration on principles, justifications, examples based on external
feedback and ongoing research.

• Please continue to send comments to ndn-interest list.

4/3/16 NDN Design Principles 26

Thank you!

NDN Project Team

ICNRG Interim Meeting, Buenos Aires
April 3, 2016

