
CDN	Architecture	Pain	Points		
and	ICN	Cures?	
Christopher	A.	Wood	

UCI	and	PARC	
ICNRG	Interim	Mee=ng	–	IETF	96	–	Berlin	

July	17,	2016	



Agenda	

•  CDN	architectures	and	paNerns	
– Fastly	and	CloudFlare	

•  TLS	deployment	concerns	
•  Major	pain	points	



Fastly	

Client protocol
terminator

cache 
engine Origin

Request (POP) Pipeline

cache cache

Varnish



Varnish	Configura=on	Language	

•  Authen=ca=on	
•  Some	rate	limi=ng	
•  Personalized	content	as	well	as	preNy	
sophis=cated	load-balancing	

•  Rou=ng	
•  Failover	



CloudFlare	

Client TLS 
terminator

CDN logic Cache Railgun Origin

Request (POP) Pipeline



Architecture	PaNerns	

•  DNS	Anycast	for	rou=ng-based	load	balancing	
•  Edge	TLS	termina=on,	cleartext	internal	traffic	
– Keep	an	eye	on	LURK	solu=ons	to	deal	with	
private	key	relinquishment	problem	

•  State	synchroniza=on	or	message	passing	
within	POPs	

•  Pushing	applica=on	logic	to	the	edge	
– Trea=ng	the	origin	as	a	data	store	or	coordinator	



TLS	Deployment	

•  HTTPS	everywhere:	best	prac*ce	
– …	but	not	needed	everywhere?	

•  Is	use	context-sensi=ve?	
– EFF:	HTTPS	everywhere	(obviously)	
– Neelix:	HTTPS	for	PlayReady	manifests	and	
HTTP(S?)	for	data	

– Banks,	e-commerce,	etc.:	HTTPS	everywhere	



The	Neelix	Case	

Chunk	1	
Chunk	2	
Chunk	3	

…	
Chunk	n	

1)	Encrypt	the	data	



The	Neelix	Case	

Chunk	1	
Chunk	2	
Chunk	3	

…	
Chunk	n	

1)	Encrypt	the	data	

2)	Encapsulate	the	key	for	recipients	



The	Neelix	Case	

Chunk	1	
Chunk	2	
Chunk	3	

…	
Chunk	n	

1)	Encrypt	the	data	

2)	Encapsulate	the	key	for	recipients	

Chunk	1	
Chunk	2	
Chunk	3	

…	
Chunk	n	

3)	Consume	the	data	



Neelix:	PlayReady	



Protec=on	Mechanisms	

•  Use	AES-CBC	to	encrypt	data	chunks	
•  Only	authorized	consumers	can	decrypt	the	
PlayReady	manifest	(license)	and	obtain	the	
symmetric	key	

•  Ra=onale?	
– AES-CBC	Allows	for	random	access	and	is	not	
supported	by	TLS	cipher	suite	

– Exposure	protected	by	client-specific	license	key	
encapsula=on	



Pain	Point	#1:	DNS	Anycast	

•  Problem:	poor	deployment	or	non-local	
resolver	can	result	in	subop=mal	POP	node.	



Pain	Point	#2:	Tracking	State	Changes	

•  Problem:	What	resources	need	to	be	changed	
when	an	object	is	modified?	



Pain	Point	#3:	Caching	API	Requests	

•  Problem:	API	requests	may	be	dynamic	and	
the	responses	typically	contain	“structured”	
JSON	data	



Pain	Point	#4:	Mixed	Content	

•  Problem:	some	applica=ons	serve	HTTP	
content	over	HTTPS,	or	the	other	way	around	



Pain	Point	#5:	Event-Driven	Content	

•  Problem:	how	can	we	handle	“event-driven”	
content?	



Pain	Point	#6:	Distributed	Applica=ons	

•  Problem:	many	applica=ons,	frameworks,	etc.	
are	not	engineering	with	caching	in	mind	



Pain	Point	#7:	TLS	Termina=on	

•  Problem:	how	do	CDNs	and	origin	servers	
coordinate	to	share	private	keys	without	
causing	long-term	problems?	


