
Secure	Replicas	and		
Nomad	Sessions	
Christopher	A.	Wood	

UCI	and	PARC	
ICNRG	Interim	Mee=ng	–	IETF	96	–	Berlin	

July	17,	2016	

1	

Session-Based	Communica=on	in	CCN	

•  Problem:		
– A	client	and	server	(replica)	want	to	establish	a	secure	
session	in	which	all	messages	will	be	encrypted	

•  One	approach:	
– Use	CCNx-KE	–	a	TLS-like	key	exchange	protocol	
tailored	for	CCN	

–  Clients	authen=cate	the	server	(and	vice	versa)	and	
the	par=es	establish	a	shared	forward-secure	session	
key	

–  The	session	key	is	used	to	encrypt	all	subsequent	
traffic	carrying	applica=on	data	

2	

Standard	CCN	Session	Communica=on	

Consumer	 Producer	data	

3	

Standard	CCN	Session	Communica=on	

Consumer	 Producer	

Perform	key	exchange	

Consumer	 Producer	

data	

encrypted	data	

4	

Session	Reloca=on	

Consumer	 Producer	key	exchange	

Replica	
encrypted	data	

move		
token	

5	

CCNx-KE	Features	

•  A	consumer	authen=cates	itself	with	a	content	
producer	and	creates	a	forward-secure	key	and	
session.	

•  The	content	producer	can	serve	content	under	that	
session	or	issue	a	move	token	to	let	another	party	
serve	content.	

•  Authen=ca=on	and	authoriza=on	are	decoupled	from	
data	produc=on	
–  Benefits:		

•  no	private	keys	need	to	be	shared	between	the	server	and	replica	
•  minimal	informa=on	disclosure	

6	

Problems	to	Address	

1.  What	is	the	trust	rela=onship	between	the	
producer	and	the	replica?	
–  Same	or	different	owner	

2.  How	is	the	move	token	transferred	from	the	
producer	or	the	replica,	or	how	is	it	created	
so	that	the	replica	can	use	it?	
–  Stateful	or	stateless?	

	

7	

Trust	Model	#1	

•  The	producer	and	replica	have	some	rela=onship.	
–  The	producer	pays	for	replica	services.	
–  A	MNO	distributes	users	to	the	best	replica.	
–  The	authen=ca=on	server	passes	the	user	to	a	load	

balancer	(via	a	move	token).	

•  The	producer	is	capable	of	crea=ng	a	secure	
channel	between	the	replica.	

•  The	producer	and	replica	can	create	and	share	
keys	(and	re-key)	on	a	regular	basis.	

8	

Trust	Model	#2	

•  The	producer	and	replica	are	owned	by	the	
same	en=ty	
– They	can	share	a	key	

•  Shared	keys	are	regenerated	regularly	

9	

Move	Token	Goals	

•  A	move	token	must	enable	the	replica	to	decrypt	
interests	and	encrypt	content	responses	
–  This	requires	the	traffic	secret	established	by	CCNx-KE	

•  In	trust	model	#1:	a	consumer	must	prove	that	
they	fetched	their	move	token	from	the	producer	

•  In	trust	model	#2:	the	consumer	proves	nothing	
	

10	

Move	Token	Usage	

Consumer	 Producer	 Replica	

(round	2	interest)	
	+	move	challenge	

(round	2	content)	
	+	move	token	

(applica=on	data	interest)	
	+	move	token,	move	proof	

(applica=on	data	content)	
		+	new	session	ID	

(con=nued	communica=on)	
11	

Move	Token	Construc=on	

•  Move	challenge	
Y	=	H(X),	for	some	X	←	{0,1}128	

•  Move	token	
T	=	kID	||	Enck(Y	||	traffic_secret)	

•  Move	proof	
X	
	

12	

Move	Token	Construc=on	

•  Move	challenge	
Y	=	H(X),	for	some	X	←	{0,1}128	

•  Move	token	
T	=	kID	||	Enck(Y	||	traffic_secret)	

•  Move	proof	
X	
	 Replica	check:	

		1.	If	kID	not	valid,	drop	
		2.	Y	||	traffic_secret	=	Deck(T)	
		3.	If	H(X)	!=	Y,	drop	

13	

Proper=es	

•  kID	is	a	key	that’s	rou=nely	refreshed	between	the	
producer	and	replica	(e.g.,	on	a	daily	basis).	

•  Replica	work	is	minimized:	
–  no	public-key	crypto	
–  single	symmetric	decryp=on	and	hash	computa=on	

•  Two	round	trips	before	data	can	be	retrieved	
–  1)	Authen=cate	with	the	producer	
–  2)	Start	a	new	session	with	the	replica	and	get	the	first	
chunk	of	data	

14	

Summing	Up	

•  CCNx-KE	is	used	to	separate	authen=ca=on	
and	authoriza=on	from	the	retrieval	of	actual	
applica=on	data.	

•  Producers	can	upload	encrypted	data	to	a	
replica	that	only	authorized	consumers	can	
decrypt.	

•  The	replica	session	is	used	as	a	form	of	
“transport	encryp=on.”	

15	

Session	Iden=fiers	

•  CCNxKE	session	iden=fiers	are	bound	to	a	
name	prefix	

•  CCNxKE	handshakes	can	establish	
bidirec=onal	session	iden=fiers	
– Consumer	to	producer	
– Producer	to	consumer	

16	

Nomad	Sessions	

•  If	names	are	loca=on-agnos=c,	consumers	and	
producers	can	move	freely	without	re-
establishing	sessions	

•  If	either	end-host	moves,	we	want	to	minimize	
or	prevent	re-keying	
– How?	Generalize	move	tokens	

17	

Nomad	Example	#1	
(sot	handoff)	

Consumer	(stationary)														Producer	(migrating)	
						|			/nameA,	(normal	interest)							|	
						+---------------------------------->|			(interest)	
						|																																			|	
						|		(MoveToken,/nameB,MoveTag)							|	
						|<----------------------------------+			(content)	
						|																																			|	
						|	/nameB,	(MoveToken,MoveTag,Proof)	|	
						+---------------------------------->|			(interest)	
						|																																			|	
						|		(SessionID)																						|	
						|<----------------------------------+			(content)	

18	

Nomad	Example	#2	
(sot	handoff)	

	Consumer	(migrating)																						Producer	(stationary)	
						|		/prefixA,	(normal	interest)													|	
						|<---+	
						|		(normal	data	response)																		|	
						+--->|	
						|																																										|	
						|		/nameA,	(MoveToken,/prefixB,MoveTag)				|	
						+--->|			(interest)	
						|																																										|	
						|		(ACK	data	response)																					|	
						|<---+			(content)	
						|																																										|	
						|	/prefixB,	(MoveToken,MoveTag,Proof)						|	
						<--+			(interest)	
						|																																										|	
						|		(SessionID)																													|	
						+-->			(content)	 19	

Don’t	Reinvent	the	Wheel	

•  RFC	5169:	Handover	Key	Management	and	
Re-Authen=ca=on	Problem	Statement	

•  RFC	6696:	EAP	Extensions	for	the	EAP	Re-
authen=ca=on	Protocol	(ERP)	

•  RFC	6697:	Handover	Keying	(HOKEY)	
Architecture	Design	

•  Mobile	DTLS	(drat-barreu-mobile-dtls-00)	
	

20	

