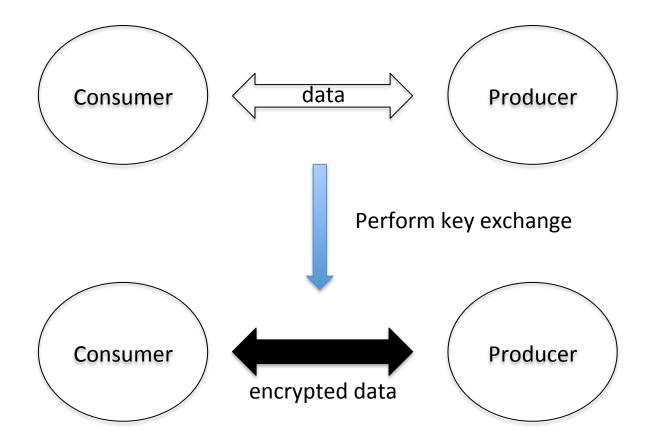
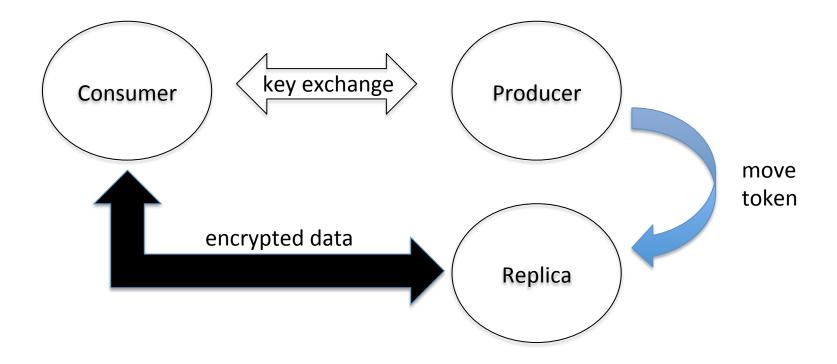

#### Secure Replicas and Nomad Sessions

Christopher A. Wood UCI and PARC ICNRG Interim Meeting – IETF 96 – Berlin July 17, 2016


#### Session-Based Communication in CCN

- Problem:
  - A client and server (replica) want to establish a secure session in which all messages will be encrypted
- One approach:
  - Use CCNx-KE a TLS-like key exchange protocol tailored for CCN
  - Clients authenticate the server (and vice versa) and the parties establish a shared forward-secure session key
  - The session key is used to encrypt all subsequent traffic carrying application data


#### Standard CCN Session Communication



#### Standard CCN Session Communication



#### **Session Relocation**



### **CCNx-KE** Features

- A consumer authenticates itself with a content producer and creates a forward-secure key and session.
- The content producer can serve content under that session or issue a move token to let another party serve content.
- Authentication and authorization are decoupled from data production
  - Benefits:
    - no private keys need to be shared between the server and replica
    - minimal information disclosure

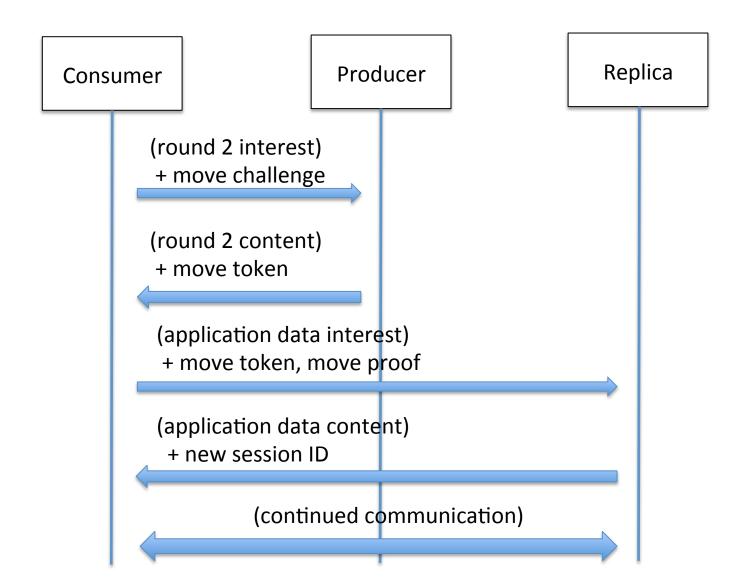
### Problems to Address

- 1. What is the trust relationship between the producer and the replica?
  - Same or different owner
- 2. How is the move token transferred from the producer or the replica, or how is it created so that the replica can use it?
  - Stateful or stateless?

## Trust Model #1

- The producer and replica have some relationship.
  - The producer pays for replica services.
  - A MNO distributes users to the best replica.
  - The authentication server passes the user to a load balancer (via a move token).
- The producer is capable of creating a secure channel between the replica.
- The producer and replica can create and share keys (and re-key) on a regular basis.

## Trust Model #2


- The producer and replica are owned by the same entity
  - They can share a key
- Shared keys are regenerated regularly

## Move Token Goals

- A move token must enable the replica to decrypt interests and encrypt content responses

   This requires the traffic secret established by CCNx-KE
- In trust model #1: a consumer must **prove** that they fetched their move token from the producer
- In trust model #2: the consumer proves nothing

### Move Token Usage



## Move Token Construction

- Move challenge Y = H(X), for some  $X \leftarrow \{0,1\}^{128}$
- Move token
  - T = k<sub>ID</sub> || Enc<sub>k</sub>(Y || traffic\_secret)
- Move proof

#### Х

## Move Token Construction

- Move challenge Y = H(X), for some  $X \leftarrow \{0,1\}^{128}$
- Move token
  - T = k<sub>ID</sub> || Enc<sub>k</sub>(Y || traffic\_secret)
- Move proof

Х

Replica check: 1. If k<sub>ID</sub> not valid, drop 2. Y || traffic\_secret = Dec<sub>k</sub>(T) 3. If H(X) != Y, drop

#### Properties

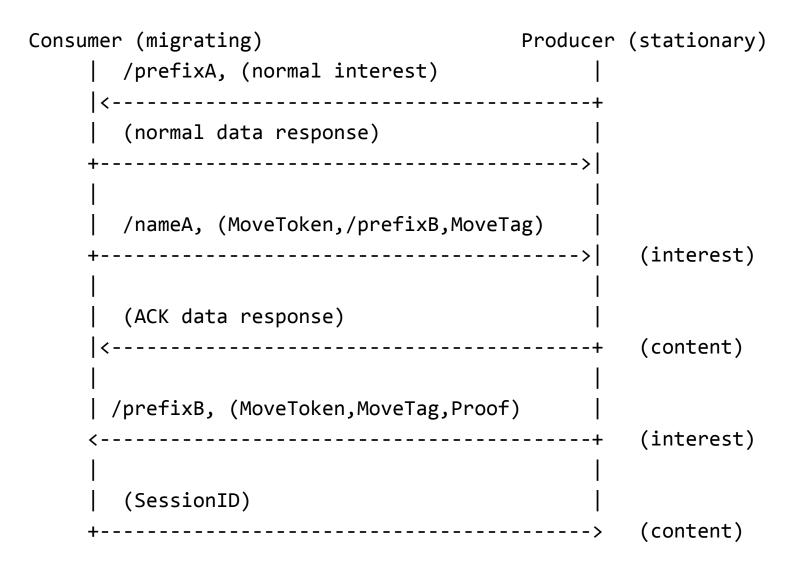
- k<sub>ID</sub> is a key that's routinely refreshed between the producer and replica (e.g., on a daily basis).
- Replica work is minimized:
  - no public-key crypto
  - single symmetric decryption and hash computation
- Two round trips before data can be retrieved
  - 1) Authenticate with the producer
  - 2) Start a new session with the replica and get the first chunk of data

# Summing Up

- CCNx-KE is used to separate authentication and authorization from the retrieval of actual application data.
- Producers can upload encrypted data to a replica that only authorized consumers can decrypt.
- The replica session is used as a form of "transport encryption."

## **Session Identifiers**

- CCNxKE session identifiers are bound to a name prefix
- CCNxKE handshakes can establish bidirectional session identifiers
  - Consumer to producer
  - Producer to consumer


### Nomad Sessions

- If names are location-agnostic, consumers and producers can move freely without reestablishing sessions
- If either end-host moves, we want to minimize or prevent re-keying
  - How? Generalize move tokens

#### Nomad Example #1 (soft handoff)

| Consumer (stationary)              | Producer   | (migrating) |
|------------------------------------|------------|-------------|
| /nameA, (normal intere             | est)       |             |
| +                                  | >          | (interest)  |
|                                    |            |             |
| <pre>(MoveToken,/nameB,Move]</pre> | Tag)       |             |
| <                                  | +          | (content)   |
|                                    |            |             |
| /nameB, (MoveToken,Move            | Tag,Proof) |             |
| +                                  | >          | (interest)  |
|                                    |            |             |
| (SessionID)                        |            |             |
| <                                  | +          | (content)   |

#### Nomad Example #2 (soft handoff)



## Don't Reinvent the Wheel

- RFC 5169: Handover Key Management and Re-Authentication Problem Statement
- RFC 6696: EAP Extensions for the EAP Reauthentication Protocol (ERP)
- RFC 6697: Handover Keying (HOKEY) Architecture Design
- Mobile DTLS (draft-barrett-mobile-dtls-00)