Outline

- I. ICN-Ping
 - I. draft-mastorakis-icnrg-icnping-00
- II. ICN-Traceroute: additions/changes vs. ICN-Ping
 - I. draft-mastorakis-icnrg-icntraceroute-00
- III. Security Considerations

I. ICN Ping draft-mastorakis-icnrg-icnping-00

Functionality (by analogy with ip ping)

Target Flavors

- Is an ICN forwarder reachable?
- Is a producer application reachable?
- Is a cached object reachable?

RTT measurements

Run several pings and provide times for each response

Reachability

- Is an ICN forwarder reachable?
 - Forwarders need names
 - Forwarder names must be routable
 - Forwarder names must be well-known
- Is a producer application reachable? Where?
 - What does it mean for an application to be reachable?
 - What name(s) would be used to determine if an application is reachable
- Is a cached object reachable? Where?
 - What does it mean for a cached object to be reachable?
 - What name(s) would be used to determine if a cached object is reachable?

Multipath

- E.g. RTT measurements in presence of multipath?
 - Path Identification
 - PathId TLV in Data Message packet header
 - Path Steering
 - PathId TLV in Interest Message packet header causes Interest to follow the reverse path of the Data Message that returned the PathId
 - Path Discovery
 - For Interests sent without PathIds, forwarders will switch Interests, making a probabilistic choice among next hops.

Echo Request/Reply Contents/Purpose

- Echo request
 - 1. Target Name
 - 2. PathId
 - 3. CS bypass
- Echo reply
 - Responding forwarder name
 - Return code (type of reachability, 1-3)
 - Is reply signed or unsigned?

Packet Formats and Processing Procedures

- Re-use Interest/Data/IntReturn Message Types
 - Largely match Int/Data forwarding semantics
 - Avoid aggregation with other pings or with Interests: Include random nonce in name(?)
 - Avoid CS caching of response: ExpiryTime TLV=0
 - Header PathId for identification/steering (not restricted to echo)
- Echo Request/Reply Packet types
 - Quick identification of ping messages
 - Allows forwarding semantic differences
 - Application node response from forwarder, i.e. Interest not passed to locally attached target application
 - Transit node CS bypass, e.g. using Hash restriction
- Matching can optionally be FIB LPM-based (e.g. add entry for local router name to FIB, with internal next-hop)

II. ICN Traceroute

draft-mastorakis-icnrg-icntraceroute-00

Functionality (by analogy with ip traceroute)

- Target Flavors
 - What is the path to an ICN forwarder?
 - What is the path to a producer application?
 - What is the path to a cached object?
- Path hop-by-hop RTT measurements
 - Run several protocol exchanges for each hop and provide times for each response
- High overlap with ping functionality/ mechanisms/procedures

Differences with Ping Proposal

- Two packet types: TracerouteRequest, TracerouteReply
- Core mechanism based on HopLimit Expiry (as with ip traceroute)
 - Additional reply code from responding forwarder:
 HopLimitExpired

III. Security Considerations

Security Considerations

- Threat Model Choices:
 - On-path/Off-path
 - Reflection attacks
- Response messages: Signed or Unsigned?

A. Backup Slides

Packet Formats: Echo Request

0 1 2 3 4 5 6 7		6 7 8 9 0 1 2 3 +	4 5 6 7 8 9 0 1	
Version	 EchoRequest 	 PacketI 	Length	
HopLimit	Reserved	 Flags	HeaderLength	
++				
Echo Request Message TLVs				

Packet Formats: Echo Reply

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+	⊦		++		
 Version 	 EchoReply 	PacketLength			
Reserved		Flags	HeaderLength		
++ PathSteering TLV					
+	+ -		ı ++		

Packet Formats: Traceroute Request

Version TrRequest PacketLength HopLimit Flags | HeaderLength Reserved PathSteering TLV Traceroute Request Message TLVs

Packet Formats: Traceroute Reply

Version TrReply | PacketLength Reserved Flags HeaderLength PathSteering TLV Traceroute Reply Message TLVs

Path Identification and Steering

A flow consists of multiple subflows. Each subflow's path reports its own $R_{sf}(t)$

- What entity tracks a flow's multiple subflows and their current $R_{sf}(t)$?
 - Consumer endpoint (application/application-library), the only entity given stated goals and assumptions
 - Significant extra responsibility for consumer vs. single-path situation
- How does consumer endpoint identify subflows and per-subflow $R_{sf}(t)$?
 - Path identifier, reported in Data message
- How are consumer endpoint's decisions about per-subflow rates honored for the consumer's Interests?
 - Path identifier, reflected back in Interest
- How are subflows discovered?
 - Interests without path identifiers must be sent initially/periodically
 - Forwarders with multiple next hops choose probabilistically
- Path Identification mechanisms have other possible uses, e.g. for ICN ping performance measurement.