Hyper-connected IoE Network Technology

13th November 2016

ICNRG
Taewan You (twyou@etri.re.kr)
Contents

• Challenges for IoE

• Research experiences

• Overview of Architecture
 • Requirements
 • Principles
 • Overall architecture

• Summary
Challenges

- Computer system
- Desktop
- Laptop
- Smart Devices
- Things

Connected devices # (>10^12)
Mobile oriented
Traffic volume

1970: TCP/IP designed

Challenges!

- Size (constrained device)
- Real-time & Reliable communication

New requirements

2020: Traffic volume

AETHER@ICNRG - Interim
Emerging Technologies

• SDN
 • Control Plane (CPI) and Data Plane (DPI) separation
 • A centralized logical control and view of the network
 • underlying network infrastructure is abstracted from the applications

• NFV
 • Decoupling SW from HW
 • Using COTS computing HW to provide Virtualized Network Functions (VNFs) through SW virtualization techniques
 • Flexible network function deployment

• Fog Computing
 • Moving cloud computing infrastructures closer to end users to address these challenges.
 • The edge computing complements the cloud computing not replace it.
Research Experiences

2000s~

Future Internet

Funded by NST

2010

mofi
Mobile Oriented Future Internet

• Mobile Intrinsic Arch.
• ID/Loc separation
• SDN based Mobile domain
• ID space compatible with IPv6

2013

NET

• ID-based Networking
• ID/Loc separation
• Hierarchical and Domain structure
• Clean-slate architecture

2016

AETHER

• Global connectivity
• Scalable networking for massive Things
• Real-timeness
• Mobility
• Reliability
• Deployability

Architecture for Internet of Everything Everywhere
Approaches

• Pure ID communication
 • Develops everything for ID based communications
 • ID, routing/forwarding, service API, etc.
 • Intrinsic security support
 • Intrinsic mobility, multi-homing support
 • Extensible to ICN concept
 • (Where is ID assigned ?)

• IP evolution
 • IP address space reuse as Locator
 • Mobility, Multi-homing support
 • Deployment in real world
 • Deployment in global testbed
 • Global collaboration works

• Hybrid approach brings the best
 • Define new ID space
 • Deployment in real world
 • Intrinsic security support
 • Intrinsic mobility support
 • Real-timeness by adopting Fog computing
 • Intelligent network by adopting ML

High-quality and Hyper connected IoE Network
 • ID/ICN – network utilization
 • Fog computing – real-timeness,
 • ML – Intelligent IoE network
Requirements and Principles

- Global & Scalable
- Real-time
- Mobility
- Reliability

- Thing to Thing (E2E) communication style as the norm
- Applied Fog-Computing as Edge network
- The unified Identifier for all of things (physical and virtual)
- Self-configuration of Non-structured / flat typed TID
- Information-Centric communication for Interworking
- Scalable and Flexible Mapping system
- IP compatible Service support
- Global Testbed
AETHER

• Name and ID
 • Application uses Name as URI
 • Self-certifying ID assigned to Things, Information

• Edge (Fog computing) and Interworking
 • Exploiting ICN
 • Pub/Sub networking, Cache

• IP core (as Internet)
 • Exploit ID/Locator separation scheme
 • Mapping System development (Name or ID to IP address)

• Advantages
 • Intrinsic security, mobility -> ICN, ID/LOC separation
 • Real-timeness -> Fog computing (In network cache)
 • Scalable and Global Interworking -> ICN (Pull model in network)
 • *Intelligent Autonomic network* -> ML
Basic scenario

Conventional host

Send HTTP GET to Temperature by URI

Register Tem. by URI

Subscribe (HTTP GET) to "/etri/7th/temp" as ID

Information synchronization

Publish to "/etri/7th/temp"
Summary

• AETHER for future IoE networking
 • Start from December, 2015 ~

• Design of AETHER
 • Both Self-certifying ID and Name
 • Enabling technologies
 • ICN
 • Fog-computing
 • ID/Locator separation

• ICN related works in ICNRG
 • Discuss about NRS design, such BF-based
 • Discuss about NRS requirements.
 • Future, we’ll participated in ICN-IoT work