IPoC: IP over CCN for seamless mobility

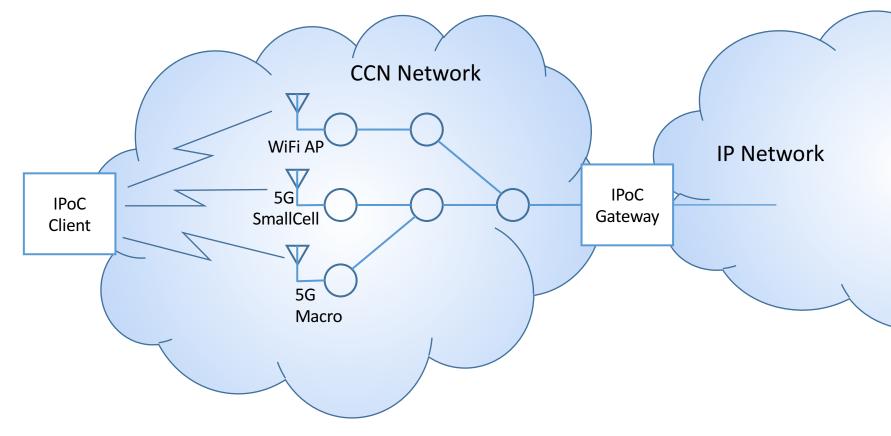
Greg White, CableLabs

ICNRG Interim Meeting

Nov. 13, 2016

Background

- ICN seems attractive for mobile networking
 - Elegant consumer mobility via stateful forwarding
 - Multipath connectivity managed by the mobile device
 - In-network caching and processing
- How do we get there?
 - Network slicing? and run two networks in parallel?
 - ICN over IP? and lose the benefits above?


Concept

- Explore the idea of using CCN as THE forwarding plane for 5G
- Support existing IP services via an "IP over CCN" protocol – replacing LTE-EPC (GTP Tunnels) for IP Mobility
- Enable deployment of native CCN applications, preserving the benefits

IP over CCN (IPoC) Goals

- Support all existing IP applications & transports without modification
 - Incl. TCP, UDP, SCTP, DCTCP, QUIC, BBR, etc.
 - ...maybe not IP multicast.
- No change to IP stacks
- Leverage consumer mobility of CCN
- Support multipath connectivity
- High performance
- Low overhead
- Be a compelling replacement for EPC

Architecture

Leverage consumer mobility

- IPoC Client only sends Interest messages
 - "upstream" IP packets carried as Interest payloads
- IPoC Gateway responds with Content Objects containing "downstream" IP packets

IPoC Naming Convention

- ccnx:/ipoc/<hex_ipaddr>/<b64_seq>
- hex_ipaddr: Client IP address
 - for IPv4: four name segments each encoding (in hex) an octet of the IP address.
 - 192.168.1.100 -> "c0/a8/1/64"
 - for IPv6: RFC2737-sec.2.2, para.1 encoding, with colons replaced with name segment delimiters
 - 3ffe:1900:4545:3::fe21:67cf -> "3ffe/1900/4545/3/0/0/fe21/67cf"
- b64_seq: Interest Sequence Number
 - base64-encoded, monotonically increasing (with rollover)

CCN Routing

- Each IPoC Gateway on the CCN network supports connectivity and address assignment for one or more IP subnets.
- Each IPoC Gateway advertises routes within the CCN network for:

 - ccnx:/ipoc/<ip4prefix> }
 ccnx:/ipoc/<ip6prefix> }

Multiple prefixes can be advertised

• ccnx:/ipoc/init

IP Address Assignment

- Client sends Interest for: ccnx:/ipoc/init/<nonce>
- CCN network routes Interest to nearest IPoC Gateway
- Gateway responds with Content Object containing IP address configuration information (i.e. the DHCPv4 / DHCPv6 information)

"Upstream" IP packet handling

- Client: Upon receipt of one or more IP packets from the local stack:
 - Send an Interest message
 - Name formed by client's IP address and next sequence number
 - Body contains entire IP packet(s)
- Gateway: Upon receipt of an Interest message
 - De-encapsulate IP packet(s) and add to resequencer for forwarding to IP network
 - Resequencer ensures in-order delivery
 - Add Sequence Number to the "Client Interest Table"

Client Interest Table (CIT)

- The CIT is a FIFO queue maintained by the gateway
- CIT contains received Interest Sequence Number and Arrival Time tuples
- One CIT per active client IP address

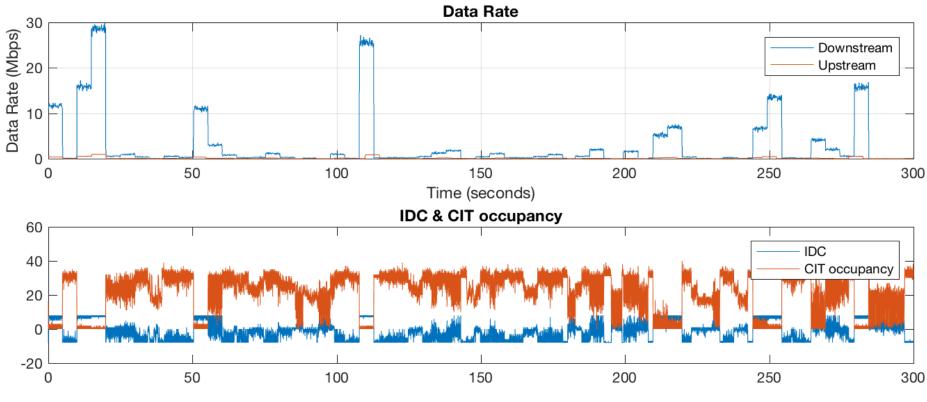
"Downstream" IP packet handling

- Gateway:
 - Arriving IP packets are queued on a per-client-IP basis*
 - Queues are serviced in a round-robin manner
 - Queue blocks when its CIT is empty
 - Packet(s) are dequeued to form a Content Object
 - CIT entry is dequeued to form CO name
 - CO includes a CO Sequence Number (monotonically increasing, with rollover)
 - CO Sequence Number space is independent of Interest Sequence Number space
- Client: Upon receipt of a Content Object
 - De-encapsulate IP packet(s) and add to resequencer for delivery to IP stack

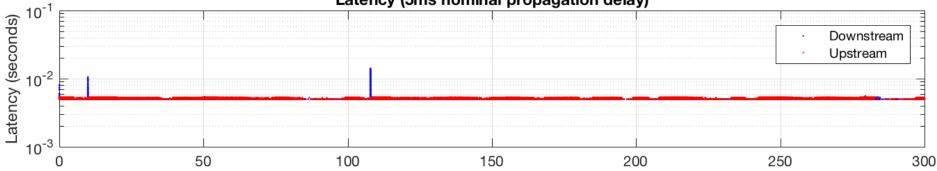
Maintaining the CIT

- To avoid introducing downstream latency, the CIT needs to always contain at least one sequence number, ideally more than one in order to support a burst of downstream traffic
- Gateway has a target number of CIT entries that it seeks to maintain during idle conditions: min_CIT (e.g. 10)
 - This could be dynamically adjusted based on traffic expectations
- Client maintains an Interest Deficit Count
 - Upon CO arrival, Client increments IDC
 - Upon Interest transmission, Client decrements IDC
 - If IDC > 0, Client sends an "empty" Interest (no payload) paced
 - IDC is bounded as: -IDC_limit <= IDC <= IDC_limit (e.g. 5)

Managing In-flight Count


- Gateway can trigger an adjustment of the number of inflight Interest Sequence Numbers (and hence CIT size)
 - Interest Deficit Report (IDR) included in Content Object
 - Allowed IDR values: -1, 0, 1
 - Client adds IDR value to its Interest Deficit Count
- IDR rules
 - Upon receipt of an Interest when the corresponding CIT is full
 - Gateway dequeues the head of CIT and sends CO with IDR = -1
 - When transmitting a CO, if the CIT size < min_CIT: Send IDR = 1

PIT Entry Lifetimes


- It is expected that PIT entries in intermediate nodes will have finite lifetimes, e.g. 300ms
- Gateway calculates a CIT Lifetime after which it considers a CIT entry to be stale
- When head-of-queue CIT entry times out, Gateway sends an "empty" Content Object
 - If CIT size < min_CIT: IDR = 1
 - If CIT size == min_CIT: IDR = 0
 - If CIT size > min_CIT: IDR = -1

If no traffic, this drains the CIT down to ~min_CIT entries

Matlab Simulation

Latency (5ms nominal propagation delay)

Linux implementation

- Implemented using Metis forwarder, using 32K max message size
- IPoC Client and Gateway processes installed as "tun" devices (similar to a VPN interface)
- Tested in small lab network configuration (1 client, minimal RTT)
- Tested using Netperf and speedtest.net
- IPoC params:
 - Max CIT = 63 entries
 - min_CIT = 10
 - IDC_limit = 6
- Efficiency (total IP bytes sent / total bytes sent):
 - Downstream: 98.9%
 - Upstream: 99.4%
- 99.9th Percentile Latency
 - Downstream: 8.4ms
 - Upstream: 14.9ms

Areas for Future Work

- NS3 simulation
- Evaluate performance impact of parameter values
- Security considerations (signed Interest payload?)