
IPoC:	IP	over	CCN	for	
seamless	mobility

Greg	White,	CableLabs
ICNRG	Interim	Meeting

Nov.	13,	2016



Background

• ICN	seems	attractive	for	mobile	networking
• Elegant	consumer	mobility	via	stateful forwarding
• Multipath	connectivity	managed	by	the	mobile	device
• In-network	caching	and	processing

• How	do	we	get	there?
• Network	slicing?	– and	run	two	networks	in	parallel?
• ICN	over	IP?		- and	lose	the	benefits	above?



Concept

• Explore	the	idea	of	using	CCN	as	THE	forwarding	
plane	for	5G

• Support	existing	IP	services	via	an	“IP	over	CCN”	
protocol	– replacing	LTE-EPC	(GTP	Tunnels)	for	IP	
Mobility

• Enable	deployment	of	native	CCN	applications,	
preserving	the	benefits



IP	over	CCN	(IPoC)	Goals

• Support	all	existing	IP	applications	&	transports	
without	modification
• Incl.	TCP,	UDP,	SCTP,	DCTCP,	QUIC,	BBR,	etc.
• …maybe	not	IP	multicast.

• No	change	to	IP	stacks
• Leverage	consumer	mobility	of	CCN
• Support	multipath	connectivity
• High	performance
• Low	overhead
• Be	a	compelling	replacement	for	EPC



Architecture

IPoC
Client

IPoC
Gateway

5G	
Macro

5G	
SmallCell

WiFi AP

CCN	Network

IP	Network



Leverage	consumer	mobility

• IPoC Client	only	sends	Interest	messages
• “upstream”	IP	packets	carried	as	Interest	payloads

• IPoC Gateway	responds	with	Content	Objects	
containing	“downstream”	IP	packets



IPoC Naming	Convention

• ccnx:/ipoc/<hex_ipaddr>/<b64_seq>

• hex_ipaddr: Client	IP	address
• for	IPv4:	four	name	segments	each	encoding	(in	hex)	an	octet	
of	the	IP	address.	
• 192.168.1.100 ->	“c0/a8/1/64”

• for	IPv6:	RFC2737-sec.2.2,para.1	encoding,	with	colons	
replaced	with	name	segment	delimiters
• 3ffe:1900:4545:3::fe21:67cf	->	
"3ffe/1900/4545/3/0/0/fe21/67cf"

• b64_seq: Interest	Sequence	Number	
• base64-encoded,	monotonically	increasing	(with	rollover)



CCN	Routing

• Each	IPoC Gateway	on	the	CCN	network	supports	
connectivity	and	address	assignment	for	one	or	
more	IP	subnets.	
• Each	IPoC Gateway	advertises	routes	within	the	
CCN	network	for:
• ccnx:/ipoc/<ip4prefix>
• ccnx:/ipoc/<ip6prefix>
• ccnx:/ipoc/init

Multiple	prefixes	can	be	advertised



IP	Address	Assignment

• Client	sends	Interest	for:		
ccnx:/ipoc/init/<nonce>

• CCN	network	routes	Interest	to	nearest	IPoC	
Gateway

• Gateway	responds	with	Content	Object	containing	
IP	address	configuration	information	(i.e.	the	
DHCPv4	/	DHCPv6	information)



“Upstream”	IP	packet	handling

• Client:	Upon	receipt	of	one	or	more	IP	packets	from	
the	local	stack:
• Send	an	Interest	message	

• Name	formed	by	client’s	IP	address	and	next	sequence	number
• Body	contains	entire	IP	packet(s)

• Gateway:	Upon	receipt	of	an	Interest	message
• De-encapsulate	IP	packet(s)	and	add	to	resequencer	for	
forwarding	to	IP	network
• Resequencer	ensures	in-order	delivery

• Add	Sequence	Number	to	the	“Client	Interest	Table”



Client	Interest	Table	(CIT)

• The	CIT	is	a	FIFO	queue	maintained	by	the	gateway
• CIT	contains	received	Interest	Sequence	Number	
and	Arrival	Time	tuples
• One	CIT	per	active	client	IP	address



“Downstream”	IP	packet	handling
• Gateway:

• Arriving	IP	packets	are	queued	on	a	per-client-IP	basis*
• Queues	are	serviced	in	a	round-robin	manner
• Queue	blocks	when	its	CIT	is	empty
• Packet(s)	are	dequeued to	form	a	Content	Object	
• CIT	entry	is	dequeued to	form	CO	name
• CO	includes	a	CO	Sequence	Number	(monotonically	
increasing,	with	rollover)
• CO	Sequence	Number	space	is	independent	of	Interest	Sequence	
Number	space

• Client:	Upon	receipt	of	a	Content	Object
• De-encapsulate	IP	packet(s)	and	add	to	resequencer for	
delivery	to	IP	stack

*more	sophisticated	queuing,	e.g.	fq_codel could	also	be	used	



Maintaining	the	CIT
• To	avoid	introducing	downstream	latency,	the	CIT	needs	to	
always	contain	at	least	one	sequence	number,	ideally	more	
than	one	in	order	to	support	a	burst	of	downstream	traffic

• Gateway	has	a	target	number	of	CIT	entries	that	it	seeks	to	
maintain	during	idle	conditions:		min_CIT (e.g.	10)
• This	could	be	dynamically	adjusted	based	on	traffic	expectations

• Client	maintains	an	Interest	Deficit	Count
• Upon	CO	arrival,	Client	increments	IDC
• Upon	Interest	transmission,	Client	decrements	IDC
• If	IDC	>	0,	Client	sends	an	“empty”	Interest	(no	payload)	– paced
• IDC	is	bounded	as:	-IDC_limit <=	IDC	<=	IDC_limit (e.g.	5)	



Managing	In-flight	Count		

• Gateway	can	trigger	an	adjustment	of	the	number	of	in-
flight	Interest	Sequence	Numbers	(and	hence	CIT	size)
• Interest	Deficit	Report	(IDR)	included	in	Content	Object
• Allowed	IDR	values:	-1,	0,	1
• Client	adds	IDR	value	to	its	Interest	Deficit	Count

• IDR	rules
• Upon	receipt	of	an	Interest	when	the	corresponding	CIT	is	full

• Gateway	dequeues the	head	of	CIT	and	sends	CO	with	IDR	=	-1
• When	transmitting	a	CO,	if	the	CIT	size	<	min_CIT:			
Send	IDR	=	1



PIT	Entry	Lifetimes

• It	is	expected	that	PIT	entries	in	intermediate	nodes	
will	have	finite	lifetimes,	e.g.	300ms	
• Gateway	calculates	a	CIT	Lifetime	after	which	it	
considers	a	CIT	entry	to	be	stale
• When	head-of-queue	CIT	entry	times	out,	Gateway	
sends	an	“empty”	Content	Object
• If	CIT	size	<	min_CIT:		IDR	=	1
• If	CIT	size	==	min_CIT:		IDR	=	0
• If	CIT	size	>	min_CIT:		IDR	=	-1

If	no	traffic,	this	drains	
the	CIT	down	to	
~min_CIT entries



Matlab Simulation



Linux	implementation

• Implemented	using	Metis	forwarder,	using	32K	max	message	size
• IPoC	Client	and	Gateway	processes	installed	as	“tun”	devices	(similar	to	
a	VPN	interface)

• Tested	in	small	lab	network	configuration	(1	client,	minimal	RTT)
• Tested	using	Netperf	and	speedtest.net
• IPoC	params:	

• Max	CIT	=	63	entries
• min_CIT	=	10
• IDC_limit	=	6

• Efficiency	(total	IP	bytes	sent	/	total	bytes	sent):	
• Downstream:		98.9%
• Upstream:	99.4%

• 99.9th	Percentile	Latency
• Downstream:	8.4ms
• Upstream:	14.9ms



Areas	for	Future	Work

• NS3	simulation
• Evaluate	performance	impact	of	parameter	values
• Security	considerations	(signed	Interest	payload?)


