YANG Schema Dispatching
Language

draft-lhotka-netmod-ysdl-00

Ladislav Lhotka
(lIhotka@nic.cz)

22 February 2016




The Problem

It is relatively easy to reuse peripheral parts of YANG data trees:

e Their content is dictated by specific technologies and/or protocols.

e Variability due to optional functions or vendor additions can be handled by
the existing YANG mechanisms: module, feature (and deviation).

Different (classes of) devices often differ in top levels of the data hierarchy,
mainly due to various forms of device virtualisation. This variability cannot be
accommodated without rewriting existing YANG modules.

Reason: YANG modules comprising a data model have a flat organisation, each
starts from the root node of the data tree (except augments).



The Solution (tl;dr)

YSDL essentially defines external augments: a schema tree is grafted to a
schema node in another module.

The result is the similar to wrapping the modules’ content in an augment state-
ment with the same target node.

The details that need to be worked out are relatively straightforward.



YSDL Characteristics

e No really new data-modelling mechanism: it works like an augment.

e Static schema: the set of modules is fixed (and advertised via yang-library),
no run-time additions. The complete schema can be retrieved from one
place.

e Backward compatible: single yang-library with the same restrictions, the
default meta-schema is the one that’s used by current servers (modules are
organised side by side).

e No changes to YANG, no extensions: target nodes for regular augments are
not tagged as such, why would we need to specify “mount points” here?



Details

Schema:
e list of modules from yang-library (conformance-type=implemented)

e list of subschemas

Each subschema has its root - internal schema node, including case - in one
of the schema’s modules.

Each schema must be self-contained.

Exactly one schema must be designated as the top-level schema.

module: ietf-ysdl
+--Ttw schemas
root of meta-schema tree_> +--Tw top-schema? schema-ref
+--Tw schema* [name]
+--Tw name string
yang-library modules _> +--Tw yang-modules* yang:yang-identifier
+--Tw subschema* [root]

subschema root—> +--Tw ToOot schema-node-path

+--Tw schemas?* schema-ref


Ladislav Lhotka



Example

{

"ietf-ysdl:schemas": {

"top-schema": "device",

"schema": [

{

"name": "device",
"yang-modules": |

1,

"subschema": |

"network-device"

module: example-device
+--rw device
+--Ttw logical-NEs
+--Tw logical-NE* [name]
+--TWw name string

}
{
"name": "if-ip",
"yang-modules": |
"ietf-interfaces",
"ietf-ip"
]
}
{
"name” . "system",

"yang-modules": |
"ietf-system"

Y1)


Ladislav Lhotka



Example (continued)

"subschema": |

{
"root": "network-device:device",
"schemas": [
"if-ip",
"system"
]
}
{
"root": "network-device:device/logical-network-element",
"schemas": [
"if-ip"

]
}
]



Example - Resulting Schema

module: network-device
+--1w device
+--rw if:interfaces

+--ro 1f:1nterfaces-state

+--Tw Ssys:system

+--Tw sys:system-state

+--tw logical-network-element [name]
+--TW name string
+--tw if:interfaces

+--10 1f:interfaces-state



Ladislav Lhotka



To Do

©® Restrictions on schema recursion.

® Implement YSDL as a server resource:
— integrate YSDL into yang-library,
— provide it as a separate resource.

® Applicability of RPCs in subschemas:

similar solution as in structural-mount - turn RPCs into actions bound to
the root node or its closest ancestor container or list.



