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Service Classification in 5G Networks™ — Motivation & Objectives

SN

e Motivation

- Existence of diverse vertical/services with different requirements in terms of QoS & capacity:
» Mobile Broadband (MBB)

Massive Machine Type Communications (MTC)

Mission Critical Communications (MCC)

Broadcast/Multicast Services (BMS)

Vehicular to X (V2X)

- 5G system management = meet the requirements resulting from a large variety of services
to be provided simultaneously optimizing the network in order to be resource and energy
efficient
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- Prioritization of services and efficient allocation of resources = need for automated service
classification schemes

® Our approach: use of supervised ML techniques (classification)

® Goal: Accurate identification of services to promote an efficient network tuning
(optimal assignment of resources to satisfy the diverse QoS requirements)

*[Investigated under the framework of FANTASTIC-5G project, H2020 G.A.671660,
http://fantastic5g.eu/]



Service Classification in 5G Networks — ML approach

-

e MBB - diverse services (file downloading, streaming) usually larger packets

e MMC = periodic communication (inter-arrival time), small packet size

e MCC - usually small packets (except P2P communications)

e BMS - larger packets, multicast/broadcast communication (not individual

destination)

® V2X (V2V or V2I) = high speed of nodes & combination with 4 others services
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* Use of predefined classes of training instances

* 3 phases: training, cross-validation, application of classifier

* Goal: from the training dataset, find a function f(x) of the input features that best
predicts the outcome of the output class y for any new unseen values of x

* Algorithms for investigation : Decision Trees, Naive Bayes classification algorithms,

Support Vector Machine (SVM), Random Forest




Service Classification in 5G Networks — ML approach

N
Classification FN: % of members of class MMC incorrectly
Service Result MMC Other services classified as not belonging to this class
FP: % of members of class MMC incorrectly
MMC TP EN classified as belonging to this class
TP: % of members of class MMC correctly
Other services Ep ™ classified as belonging to this class

TN: % of members of class MMC correctly
classified as not belonging to this class

» Use of traditional evaluation metrics (e.g. accuracy, precision, recall)
* Analysis of the tradeoff between metrics (ROC curve)
e Optimization of metrics depending on the service (e.g. high values of Recall for

MCC services)

e Definition of customized evaluation metric depending on the service



QoS provision and capacity expansions’- Extended DSA/ RRM

N

Extensions to Dynamic Spectrum Access and RRM
® Machine learning and prediction based solution to a complex problem
® Involving 5G services and KPIs

® Leveraging on various licensing schemes, allocation possibilities, wide range
of spectrum

e Handling a wide range of mobility cases
® Leading to automated and robust solutions
e Functionality partitioned between MAC and management layers

-

*[Investigated under the framework of SPEED-5G project, H2020 G.A.: 671705, https://speed-5g.eu/]



QoS provision and capacity expansions - Predictive RRM in
environments with high-mobility

-
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Mobile network state characterization & prediction —
Motivation & Objectives

SN

e Motivation

- Diverse and complex actions (addition/removal of TRXs, transition from 2G—>3G—>4G
features etc) take place in a real-world mobile network

— Online optimization of network performance - automated analysis of each action’s impact
to the network KPIs (customized to the specific network characteristics)

e Our approach:

- Impact analysis of resource allocation actions using unsupervised ML techniques (clustering
approach)

- Prediction of network traffic/quality metrics using supervised ML techniques

e Objectives:

- Identification of resource allocation actions that result in ameliorated/ deteriorated
network performance

- Prediction of future network KPIs considering that a specific resource allocation action will
take place



e Impact Analysis of resource allocation actions using clustering mechanisms:

- Input of ML mechanism: network traffic/quality data of cells that affected by these actions
-~ ML mechanism: Clustering (k-Means)

—  Output of ML mechanism: groups of cells where the cells in the same group (called a
cluster) are more similar to each other than to those in other groups

x-axis (silhouette coefficient values) :
separation distance between the
resulting clusters; how unsimilar each
cell in one cluster is to cells in the
neighboring clusters

/

|
5 |
|
4 | /
|
3
- I
&
2
T
-
g 2
o
|
|
1 |
|
I
|
L 1 1 1 1 1
-0.1 00 0.2 04 06 08

The silhouette coefficient values

10

High Performance
Cluster

Very High
Performance
Cluster

Average
Performance
Cluster

Low Performance
Cluster




Impact Analysis of resource allocation actions using clustering mechanisms:

Indicative clustering results (centroids representation) for traffic data of cells in a specific

region

Input data: Voice traffic data during one month period
Ouput data: 4 clusters of cells (Low/Average/High/Very High Performance)
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e Prediction of network traffic/quality metrics using supervised ML techniques

- Input of ML mechanism: network traffic/quality data of cells that affected by these actions
—~ ML mechanism: Time series prediction mechanisms (SVM, Neural Networks etc)

- Output of ML mechanism: predicted future values of traffic/quality metrics for specific
cells using past traffic/quality data

® Next steps:
- Use of accurate evaluation metrics for time series prediction

- Analysis of the tradeoff between metrics depending on the KPIs



Development of automation mechanisms based on machine learning for:

- Service Classification in 5G networks
-~ QoS provision in 5G networks
- Mobile network state characterization

Evaluation of service classification techniques for 5G networks
- Definition/Selection of evaluation metrics
Evaluation of predictive mechanisms in a high mobility scenario
- Impact analysis of high mobility characteristics in prediction model
Evaluation of predictive mechanisms for real-world mobile network scenario

- Selection of adequate evaluation metrics



Thank You!

~
For details you can visit:

http://tns.ds.unipi.gr

http://incelligent.net

\http://wings-ict-solutions.eu
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SPEED-5G intends to break spectrum
and technology silos for optimal
service provisioning and quality of
experience

Challenge on how to break the
technological silos in a more flexible
way in the longer term by exploiting
and improving advanced flexible
wireless technologies

Improving autonomous management
of small cells in dense scenarios



FANTASTIC-5G aims to develop a new multi-service Air Interface (Al) for below 6 GHz
through a modular design

Key characteristics of the new interface:
flexibility, scalability, versatility, efficiency and future-proofness

Development of the technical Al components and integration an overall Al framework
where adaptation to various sources of heterogeneity will be accomplished
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