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ContextualizaWon	
  
Applying	
  Machine	
  Learning	
  to	
  Networks	
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D.	
  Clark	
  (MIT)	
  “A	
  Knowledge	
  Plane	
  for	
  the	
  
Internet”,	
  2003	
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Clark, David D., et al. "A knowledge plane for the internet." Proceedings of 
the 2003 conference on Applications, technologies, architectures, and 
protocols for computer communications. ACM, 2003.	
  

“we	
  propose	
  a	
  new	
  construct,	
  the	
  Knowledge	
  
Plane,	
  a	
  pervasive	
  system	
  within	
  the	
  network	
  
that	
  builds	
  and	
  maintains	
  high-­‐level	
  models	
  of	
  
what	
  the	
  network	
  is	
  supposed	
  to	
  do”	
  
	
  
“The	
  knowledge	
  plane	
  is	
  novel	
  in	
  its	
  reliance	
  
on	
  the	
  tools	
  of	
  AI	
  and	
  cogniWve	
  systems.”	
  



Why	
  we	
  are	
  not	
  there?	
  
•  TradiWonally	
  networks	
  have	
  been	
  distributed	
  systems	
  

–  ParWal	
  view	
  and	
  control	
  	
  
•  Beyond	
  programmability,	
  SDN	
  provides	
  centralizaCon:	
  

–  Full	
  control	
  over	
  the	
  network	
  
•  Data-­‐Plane	
  nodes	
  are	
  now	
  equipped	
  with	
  compuWng	
  
and	
  storage	
  capabiliWes	
  
–  Network	
  telemetry	
  and	
  analyWcs	
  
–  Rich	
  view	
  of	
  the	
  network	
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Knowledge-­‐Defined	
  Networking	
  

•  Apply	
  ML	
  techniques	
  to	
  Networking:	
  
–  Control	
  (fast	
  dynamics)	
  

•  E.g,	
  rouWng,	
  resource	
  allocaWon	
  (NFV/SFC),	
  PCE,	
  opWmizaWon,	
  
congesWon	
  detecWon	
  

– Management	
  (slow	
  dynamics)	
  
•  E.g.,	
  network	
  planning,	
  resource	
  management,	
  load	
  esWmaWon	
  

–  RecommendaWon	
  mechanisms	
  
•  Towards	
  self-­‐driving	
  networks	
  
•  Knowledge-­‐Defined	
  Networking	
  paradigm	
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Knowledge-­‐Defined	
  Networking	
  Paradigm	
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Fig. 1. The Knowledge plane

shows an overview of the KDN architecture and its functional
planes.

The Data Plane is responsible for storing, forwarding and
processing data packets. In SDN networks, data plane devices
are typically white-boxes composed of line-rate programmable
forwarding hardware. They operate unaware of the rest of
the network and rely on the other planes to populate their
forwarding tables and update their configuration.

The Control Plane exchanges operational state in order
to update the data plane matching and processing rules. On
an SDN network, this role is assigned to the –logically
centralized– SDN controller that programs SDN data-plane
forwarding elements via a southbound interface, typically
using an imperative language. While the data-plane operates
at packet time-scales, the control-plane is slower and typically
operates at flow time-scales.

The Management Plane ensures the correct operation and
performance of the network in the long term. It defines the
network topology and handles the provision and configuration
of network devices. In SDN networks this is usually handled
also by the SDN controller. The management plane is also
responsible of monitoring the network to provide critical
network analytics. For this it collects telemetry information
from the data plane while keeping an historical record of
network state and events. The management plane is orthogonal
to the control and data planes and typically operates at a slower
time-scale.

The Knowledge Plane, as originally defined by Clark, is
redefined in this paper under the terms of SDN. In that
sense, we adapt Clarks definition of the KP: the heart of the
knowledge plane is its ability to integrate behavioral models
and reasoning processes into an SDN network. The KP takes
advantage of the Control and Management planes to obtain
a full view and control over the network. It is responsible
of learning the behavior of the network and, in some cases,
automatically operate the network accordingly. Fundamentally,
the KP processes the network analytics collected by the man-
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Fig. 2. KDN operational loop

agement plane, transforms them into knowledge via machine
learning, and uses that knowledge to take decisions (either
automatically or through human intervention). Parsing the
information and learning from it is typically a slow process,
however using such knowledge automatically can be done at
a time-scales close to the control and management planes.

III. KNOWLEDGE-DEFINED NETWORKING

The Knowledge-Defined Networking architecture operates
by means of a loop -in a similar way to control systems– to
provide automation, recommendation, optimization, validation
and estimation. Fig. 2 shows the main steps of such loop, in
what follows we describe them in detail.

a) Forwarding Elements ! Analytics Platform: The Ana-
lytics Platform aims to gather as much information as possible
to offer a complete view of the network. To that end, it
monitors in real time the Data Plane elements while they for-
ward packets in order to access fine-grain traffic information.
Besides, it queries the state at the SDN controller to obtain
control and management state. The analytics platform relies
on protocols such NETCONF2 (to obtain the configuration
and operational data from network devices) and NetFlow3 (to
extract traffic information and samples). The most relevant data
collected by the Analytics Platform is summarized below.
• Packet-level data and flow-level data: this includes DPI

information, flow granularity data and relevant traffic
features.

• Network state: This includes the logical and physical
configuration of the network as well as the network
topology.

• Service-level telemetry: In some scenarios the analytics
platform will also monitor and store service-level infor-
mation (e.g, load of the services, QoE, etc), this is rele-
vant to learn the service-related behavior and its relation
with network performance, load and configuration.

2RFC 6241
3RFC 3954



Benefits	
  of	
  KDN	
  

8	
  

•  RecommendaWon	
  
•  OpWmizaWon	
  

•  Hidden	
  InformaWon	
  
•  Complex	
  systems	
  

•  EsWmaWon	
  
•  Performance/Cost	
  

•  ValidaWon	
  
•  Performance/Cost	
  

•  Knowledge	
  discovery	
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shows an overview of the KDN architecture and its functional
planes.
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are typically white-boxes composed of line-rate programmable
forwarding hardware. They operate unaware of the rest of
the network and rely on the other planes to populate their
forwarding tables and update their configuration.

The Control Plane exchanges operational state in order
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forwarding elements via a southbound interface, typically
using an imperative language. While the data-plane operates
at packet time-scales, the control-plane is slower and typically
operates at flow time-scales.

The Management Plane ensures the correct operation and
performance of the network in the long term. It defines the
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of network devices. In SDN networks this is usually handled
also by the SDN controller. The management plane is also
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network analytics. For this it collects telemetry information
from the data plane while keeping an historical record of
network state and events. The management plane is orthogonal
to the control and data planes and typically operates at a slower
time-scale.

The Knowledge Plane, as originally defined by Clark, is
redefined in this paper under the terms of SDN. In that
sense, we adapt Clarks definition of the KP: the heart of the
knowledge plane is its ability to integrate behavioral models
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to offer a complete view of the network. To that end, it
monitors in real time the Data Plane elements while they for-
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Besides, it queries the state at the SDN controller to obtain
control and management state. The analytics platform relies
on protocols such NETCONF2 (to obtain the configuration
and operational data from network devices) and NetFlow3 (to
extract traffic information and samples). The most relevant data
collected by the Analytics Platform is summarized below.
• Packet-level data and flow-level data: this includes DPI

information, flow granularity data and relevant traffic
features.

• Network state: This includes the logical and physical
configuration of the network as well as the network
topology.

• Service-level telemetry: In some scenarios the analytics
platform will also monitor and store service-level infor-
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Can	
  we	
  learn	
  how	
  to	
  route?	
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Can	
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  learn	
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  to	
  route?	
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–  Which	
  egress/ingress	
  links	
  should	
  overlay	
  routers	
  use?	
  	
  E.g.	
  A	
  or	
  B	
  and	
  C	
  or	
  D?	
  

•  Underlay	
  is	
  assumed	
  that	
  has	
  an	
  arbitrary	
  constant	
  rouWng	
  
•  Underlay	
  is	
  assumed	
  as	
  hidden	
  and	
  out-­‐of-­‐control	
  
•  Overlay	
  protocol	
  is	
  assumed	
  to	
  be	
  able	
  to	
  choose	
  egress	
  and	
  ingress	
  links,	
  we	
  refer	
  

to	
  this	
  as	
  rouWng	
  policy	
  

–  Goal:	
  Achieve	
  overall	
  minimum	
  latency	
  

Unknown	
  undelay	
  	
  
network	
  

A	
  
B	
  

C	
  
D	
  



Can	
  we	
  learn	
  how	
  to	
  route?	
  
•  Train	
  

–  Ingress/Egress	
  policy	
  
–  Traffic	
  (source,	
  desWnaWon,	
  bandwidth)	
  
–  ResulWng	
  performance:	
  delay	
  

•  Generate	
  a	
  model	
  
–  	
  f(ingress/egress	
  policy,	
  traffic)	
  =	
  delay	
  

•  OpWmize	
  
–  Pick,	
  for	
  a	
  given	
  traffic	
  matrix	
  and	
  for	
  

each	
  blue	
  node,	
  an	
  ingress/egress	
  link	
  
configuraWon	
  that	
  minimized	
  the	
  delay	
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SDN	
  Controller	
  

Train	
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OpWmize	
  



Experimental	
  Setup	
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Is	
  it	
  feasible	
  to	
  learn	
  how	
  to	
  route?	
  
Methodology	
  

•  Understand	
  the	
  accuracy	
  of	
  ML-­‐based	
  regressors	
  under	
  
various	
  network	
  parameters	
  

•  Train	
  a	
  set	
  of	
  ML-­‐based	
  esWmators	
  (NN,	
  SVM,	
  etc)	
  
–  f(ingress/egress	
  policy,	
  traffic)=delay	
  
–  Try	
  to	
  find	
  the	
  opWmal	
  performance	
  of	
  the	
  regressors	
  (search	
  
over	
  meta-­‐parameters)	
  

–  Datasets:	
  10.000	
  samples	
  
–  Cross-­‐validaWon	
  (60%	
  training,	
  40%	
  evaluaWon)	
  

•  Evaluate	
  its	
  accuracy	
  when	
  varying	
  different	
  network	
  
parametrs	
  	
  
–  Size,	
  acWve	
  staWons,	
  rouWng,	
  etc	
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Training	
  Set:	
  Packet-­‐Level	
  Simulator:	
  Omnet++	
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Parameter	
   VariaCon	
  

Topology	
   Star,	
  Ring	
  and	
  Scale-­‐free	
  
	
  

Traffic	
  distribuCon	
  
	
  

Poisson,	
  Binomial,	
  Uniform	
  and	
  DeterminisWc	
  
	
  

Size	
  of	
  the	
  network	
  
	
  

3-­‐15	
  

AcCve	
  StaCons	
  
	
  

3-­‐15	
  

Underlay	
  rouCng	
  policy	
  
	
  

10	
  (random	
  variaWons	
  of	
  traffic	
  sent	
  through	
  each	
  
path)	
  	
  
	
  

Link	
  SaturaCon	
  
	
  

4	
  levels,	
  level	
  3	
  means	
  that	
  at	
  least	
  1	
  link	
  is	
  saturated	
  



Regressors	
  
•  Single-­‐layer	
  Neural	
  Network	
  

– We	
  iterate	
  over	
  sizes:	
  3-­‐200	
  
–  AcWvaWon	
  funcWons:	
  sigmoid,	
  recWfied	
  linear	
  unit,	
  
hypervolic	
  tangent	
  

•  Polynomial	
  regression	
  
–  Linear	
  search	
  of	
  the	
  degree:	
  1-­‐20	
  

•  Support	
  Vector	
  Machine	
  
–  C	
  parameter	
  randomly	
  chosen	
  between	
  10-­‐6	
  and	
  100	
  
–  Kernels:	
  Polynomial,	
  Radial	
  Basis	
  FuncWon	
  and	
  LogisWc	
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Experimental	
  Results	
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MSE	
  vs.	
  Training	
  set	
  size	
  
(scale-­‐free,	
  poisson	
  traffic,	
  9	
  acWve	
  staWons)	
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policies will be studied, obtained after the random varia-
tion of the percentatge that is sent through each possible
path.

• Link saturation (S). We set 4 levels, being the 3rd
level the point in which links should start to saturate on
average, or in other words, packets should start to be
discarded.

To study the influence of each of the precedent parameters in
the fitting capacity of the models, we iterate over the stated
values for every parameter while fixing the rest to their default
values. Those default values are: 15 stations (N), 3 active
stations (NAS), all traffics considered (NICT), shortest path
routing (R), and second level of saturation (S).

Finally, to evaluate the modeling capacity machine learning
offers when restricted to the stated problem, we not only
analyze the test error each estimator obtains, but also the
number of examples it requires to reach a certain error bound
and the time that is needed to train it.

III. EXPERIMENTAL RESULTS

In this section we show the results obtained after performing
the experiments as described in section II. It is not possible
to fit all the plots and tables in the available space, so
given the fact that most of the experiments show a similar
tendency and suggest the same conclusions we have decided
to restrict to a subset of them, ensuring they are sufficiently
representative. Any difference with respect to the rest of non-
depicted situations will be clearly outlined.

Figures 3a to 3e show the different generalization errors that
we obtain when varying the parameters stated in section II. In
this case the plots are restricted to Poisson services (exponen-
tially distributed packet lengths) and to the overlay-underlay
topology. At the same time, table III shows a summary of the
principal component analysis of some of the plotted situations.

On their behalf, figures 1 and 2 show the required number
of examples to reach a certain minimum or average validation
error for two very particular cases, which are:

• Case 1: Poisson services, overlay-underlay topology, 3
stations, all of them active, shortest path policy for
underlay nodes and low link saturation (Fig. 1).

• Case 2: Poisson services, overlay-underlay topology, 9
stations, all of them active, shortest path policy for
underlay nodes and low link saturation (Fig. 2).

Finally, tables I and II show the mean and minimum time
required for training the selected models in two particular
cases, the ones depicted in figures 1 and 2.

IV. DISCUSSIONS

The first conclusion the results suggest is that the error
observed in the plots is mostly caused by the variance of the
data (irreducible error) rather than due to an underfitting of the
models. This is important since it implies that the experimental
results can be used to infer properties from the networks we
are studying. Three main arguments support this statement:

• All three estimators achieve an almost-identical bound
(except in some specific points). This would be too
unlikely unless this value matched the optimal error.

Fig. 1: Minimum and average training error as a function of the
training set size, Poisson services, overlay-underlay topology,
3 stations

Fig. 2: Minimum and average training error as a function of the
training set size, Poisson services, overlay-underlay topology,
9 stations

• The training and test error are close enough to assume the
models don’t underfit nor overfit the data. An example of
this can be found while comparing fig. I and fig. II to fig.
3a.

• The increase of the generalization error when suppressing
input variables (see fig. 3e) can be intuitively explained
by the increase of variance contained in the corresponding
dimensions that have been suppressed, as table III shows.
In other words, the consonance of this two elements
suggests that the error is mostly caused by the variance
contained in the data, not by an underfitting of the model.

On its behalf, results in fig. I and fig. II suggest that the data
seems to be stationary, thus representative of the distribution
from which it has been generated. This implies that we can
discard an underfitting in the models due to an insufficient
data set. This conclusions can be inferred from the fact that



MSE	
  vs.	
  RouWng	
  policy	
  
(scale-­‐free,	
  poisson	
  traffic,	
  9	
  acWve	
  staWons)	
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(a) Error as a function of the number of stations (b) Error as a function of the number of active (transmitting) stations

(c) Error as a function of the saturation level (d) Error as a function of the routing policy

(e) Error as a function of stations considered when training the
models

Fig. 3: Error analysis, overlay-underlay topology, poisson services



MSE	
  vs.	
  Load	
  
(scale-­‐free,	
  poisson	
  traffic,	
  9	
  acWve	
  staWons)	
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(a) Error as a function of the number of stations (b) Error as a function of the number of active (transmitting) stations

(c) Error as a function of the saturation level (d) Error as a function of the routing policy

(e) Error as a function of stations considered when training the
models

Fig. 3: Error analysis, overlay-underlay topology, poisson services

(a) Error as a function of the number of stations (b) Error as a function of the number of active (transmitting) stations

(c) Error as a function of the saturation level (d) Error as a function of the routing policy

(e) Error as a function of stations considered when training the
models

Fig. 3: Error analysis, overlay-underlay topology, poisson services
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Conclusions	
  &	
  Future	
  Work	
  
•  Results	
  suggest	
  that	
  learning	
  how	
  to	
  route	
  is	
  feasible	
  

–  Low	
  error	
  for	
  all	
  three	
  esWmators	
  	
  
–  All	
  three	
  esWmators	
  converge	
  to	
  the	
  (almost)	
  same	
  error	
  
–  Polyinomial	
  regressor	
  (order	
  2)	
  is	
  way	
  faster	
  to	
  train.	
  	
  

•  Increased	
  load	
  in	
  the	
  network	
  leads	
  to	
  larger	
  esWmator	
  error	
  
–  This	
  may	
  be	
  due	
  to	
  the	
  higher	
  randomness	
  in	
  the	
  delays	
  

•  This	
  represents	
  a	
  new	
  breed	
  of	
  network	
  modeling	
  
algorithms	
  

•  Future	
  work	
  	
  
–  Test	
  with	
  larger	
  networks	
  
–  How	
  can	
  we	
  represent	
  the	
  topology?	
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Thanks!!!	
  
•  More	
  informaWon	
  about	
  KDN:	
  

–  Albert	
  Mestres,	
  Alberto	
  Rodriguez-­‐Natal,	
  Josep	
  Carner,	
  Pere	
  Barlet-­‐Ros,	
  Eduard	
  Alarcón,	
  
Marc	
  Solé,	
  Victor	
  Muntés-­‐Mulero,David	
  Meyer,	
  Sharon	
  Barkai,	
  Mike	
  J	
  HibbeM,	
  Giovani	
  
Estrada,	
  Florin	
  Coras,	
  Vina	
  Ermagan,	
  Hugo	
  Latapie,	
  Chris	
  Cassar,	
  John	
  Evans,	
  Fabio	
  
Maino,	
  Jean	
  Walrand	
  and	
  Albert	
  Cabellos	
  “Knowledge-­‐Defined	
  Networking”	
  in	
  
Arxiv.org	
  (hTp://arxiv.org/pdf/1606.06222.pdf)	
  

•  Contribute	
  to	
  the	
  NML	
  WG	
  at	
  IRTF	
  
–  hTps://datatracker.ieX.org/rg/nmlrg/charter/	
  

•  Have	
  a	
  dataset?	
  Want	
  to	
  start	
  training	
  your	
  neural-­‐
network?	
  
–  Public	
  data-­‐sets	
  available	
  at:	
  hTp://knowledgedefinednetworking.org	
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