
draft-aanchal4-ntp-mac-02

NTS F2F

Aanchal Malhotra
Sharon Goldberg

October 14, 2016

v4 IHL TOS Length

IPID Frag Offset

TTL Protocol = 17 IP Header Checksum

Source IP

Destination IP

Source Port Dest Port = 123

Length Checksum

LI v Mode 5 Stratum Poll Precision

Root Delay

Root Dispersion

Reference ID

Reference Timestamp

Origin Timestamp

Receive Timestamp

Transmit Timestamp

Key ID = 00000001

Message Digest = 324a4b23130fff3eab4581931ee6fa5d4

IP header

UDP header

NTP data

NTP MAC

NTP Packet

Why is MD5 (key||message) insecure?

RFC 5905 suggests MD5 (key||message) for NTP authentication.

Why is this bad?

• RFC 6151 says not to use MD5 for authentication this way.

• MD5 as a hash function is not collision resistant
• Can find x1, x2 so that MD5(x1)=MD5(x2) in < 1sec
• Using e.g. https://marc-stevens.nl/p/hashclash/

• MD5 (key||message) is vulnerable to length extension attack
• Given y = MD5 (key || m1)
• Can construct MD5 (key || m1 || m2) without knowing key!
• https://en.wikipedia.org/wiki/Length_extension_attack

https://marc-stevens.nl/p/hashclash/
https://en.wikipedia.org/wiki/Length_extension_attack

Updating NTP’s MAC: Potential Algorithms

Algorithm Input Key-
Length (bytes)

Output Tag
Length (bytes)

Legacy MD5 16 16

HMAC-MD5 [RFC 4868] 16 16

HMAC -SHA224 [RFC 4868] 16 28 (truncated to
16)

CMAC (AES) [RFC 4493] 16 16

GMAC (AES) [RFC 4543] 16 16

Poly1305 (ChaCha20) [RFC 7539] 16 16

We include these just for
performance comparison

NTP’s Performance Requirements for its MAC

1. Constant Computational Latency:
• fewer clock cycles for computation is better
• this directly translates to a reduction in jitter

2. Throughput:
• NTP servers can deal with thousands of requests per second
• NIST's NTP stratum 1 servers cater to 28,000

requests/second/server on an average

We perform two different benchmarks once with AES-NI enabled
and the other time disabled on an x86_64, Intel(R) Xeon(R) CPU E5-
2676 v3 @ 2.40GHz with one core CPU.

Performance: Latency in Clock Cycles per Byte

Algorithm with AES-NI w/o AES-NI

Legacy MD5 16.0 15.7

HMAC –MD5 18.2 18.1

HMAC -SHA224 39.4 39.0

CMAC (AES) 6.6 11.3

GMAC (AES) 3.0 10.8

Poly1305-ChaCha20 14.4 15.0

Latency in terms of number of CPU cycles per byte (cpb)
when processing a 48-byte NTP payload.

Algorithm with AES-NI w/o AES-NI

Legacy MD5 3118K 3165K

HMAC (MD5) 2742K 2749K

HMAC (SHA-224) 1265K 1267K

CMAC-AES 7567K 4388K

GMAC 16612K 4627K

Poly1305-ChaCha20 2598K 2398K

throughput in terms of number of 48-byte NTP payload processed per second

Performance: Throughput in NTP packets per second

NTP-Specific Constraints with using GMAC

• NTP servers are stateless

• Symmetric key is shared by many servers (typically at the same stratum)

Nonce Reuse vulnerability of GMAC : can recover authentication key

Nonce length = 96 bits
High probability of collision after 2^48 messages (birthday bound)

NTP server is stateless - does not know when to refresh keys for a client

An MiTM can replay messages and exhaust this number very fast

Why is this a problem?

Recommendations

• GMAC - best performance but is surrounded by several security issues

• HMAC - poor performance (lack of h/w support), but better security

• CMAC - reasonable choice between performance and security requirements

We recommend CMAC for now!

Algorithm Performance Security

GMAC best weak

CMAC medium good

HMAC poor good

Other potential MAC candidates with nice features

• SipHash - Optimized to work with short messages

• GCM-SIV (still an internet draft) - Nonce misuse resistant

• Other CAESAR AEAD competition candidates

