
Semantic Interoperability Requires
Self-describing Interaction Models

IRTF T2TRG Meeting, San Jose, CA, USA, 2016

Matthias Kovatsch (kovatsch@inf.ethz.ch)

Klaus Hartke (hartke@tzi.org)

1

mailto:kovatsch@inf.ethz.ch
mailto:hartke@tzi.org

Information Model for Interoperability

• Make use of data produced by IoT devices

• Well understood that data must be meaningful

  About the “what”

• Domain-specific requirements have led to multiple consortia

• Each consortium has defined their own data model

• Inferred meta model could help to bridge between data models

2

Interaction Model

• Machine-to-machine communication

• Handle change in a global system through automation

  About the “how”

• Integration of descriptions on the server side is straight-forward

• Consumption on the client side is challenging

• Missing abstractions have led to hard-coded clients

3

Change

4

Still control old things

Also control future things

Control alternative things

Add new things

Interaction Model

• Machine-to-machine communication

• Handle change in a global system through automation

  About the “how”

• Integration of descriptions on the server side is straight-forward

• Consumption on the client side is challenging

• Missing abstractions have led to hard-coded clients

5

Semantic Interoperability

• Information model
• Describing the exchanged information  vocabulary

• Must allow for linking data models from different application domains

• Semantic model such as RDF can span multiple domains/consortia

• Interaction model
• Describing the possible interactions with a service/thing  vocabulary

• Must allow for change and diversity

• Hypermedia-driven REST (HATEOAS)

6

Interaction Model with HATEOAS

• Hypermedia As The Engine Of Application State

• Model application with atomic interaction steps (request-response)

• Links and forms describe how requests must be formulated

• Relation type vocabulary attaches meaning (shared a priori)

• Publication of links and forms allows for change (URIs shared at runtime)

8

Thing B

Thing A

Follow links

Idea
Client

HATEOAS

Auth-Server

Dynamically extend
process flow

Resource
Directory

Entry URI

Submit forms
Action
Result

9

Thing C

Thing D

Choice &
redundancy

HATEOAS Summary

• Atomic interactions are described in-band and shape application
• Links

• Forms

• Relation types (shared a priori)

• Loose Coupling
• Servers are free to define their own resource structure

• Clients and servers can evolve independently

• Clients can learn applications on the fly
• Dynamically add new or even proprietary features

• Clients can adapt to changing environments

• Servers are easy, clients are hard
10

Web Mashups through Open APIs

11

In
te

rn
al

 m
ic

ro
se

rv
ic

e
A

P
Is

12

… Often Break

13

Human Web Interaction

CoRE-HAL and Hypermedia Client
Extensions by Matthias Kovatsch and Yassin Hassan

kovatsch@inf.ethz.ch

14

mailto:kovatsch@inf.ethz.ch

Extensible Representation Format

• CoRE-HAL base format
• For now JSON (without -LD)

• Hypermedia controls (links and forms)

• Common descriptions (things, locations)

• Application-specific extensions
• Descriptions for atomic use cases

• Grouping of semantic vocabulary
• Information model

• Link and form relation types

15

Discovery

Hypermedia
Controls

Applications

CoRE-HAL
Base Format

CoRE-HAL
Extension

(own media type)

CoRE-HAL Lighting State Example

{

 "value": {"r":255, "g":0, "b":0},

 "mode": "rgb",

 "_links": {

 "same-as": {

 "href": "/brightness",

 "type": "application/x.lighting-state+json"

 }

 },

 "_forms": {

 "edit": {

 "method": "PUT",

 "href": "/light",

 "accepts": "application/x.lighting-state+json"

 }

 }

}

Application Data

Links

Forms

16

How?
Client

Resource
Directory

Thing A

Auth-Server

Thing B

Thing C

Follow links

Submit forms

Dynamically extend
process flow

Entry URI
Action
Result

Thing C

Choice &
redundancy

17

18

Hypermedia Client

• High-level path description to resource based on link relation types

• Actual (dynamic) URIs are retrieved from representations

19

Entry Point Light Resource State Resource

entry = new HypermediaClient("coap://home.local"); // entry point
light = entry.follow("lighting"); // link relation type
state = light.follow("state"); // link relation type

light state

Hypermedia Client Futures

• Lazy loading of resource representations

• Only request representations (i.e., transmit data) when used

20

Entry Point Light Resource State Resource

entry = new HypermediaClient("coap://home.local");
light = entry.follow("lighting"); // returns Future
state = light.follow("state"); // returns Future
representation = state.get(); // lazy evaluation (not a GET)

light state

Hypermedia Client Futures

• Reloadable resource representation in the Future

• Transparently handles cache control

21

Entry Point Light Resource State Resource

entry = new HypermediaClient("coap://home.local");
light = entry.follow("lighting");
state = light.follow("state"); // returns Future
representation = state.get(); // lazy evaluation
/* Max-Age expires */
representation = state.get(); // retransmission of representation

light state

Hypermedia Client Futures

• Bookmark support

• On error discovery is re-triggered
to recover from unavailable/replaced resources/devices

22

Entry Point Light Resource State Resource

/* thing is replaced, address and resource path changes */
data = state.get(); // resource described in Future is re-discovered

light state

Hypermedia Client Programming API

• Programmatically provide application-specific operations

• Allow developer to use the IDE auto-completion feature

23

public class LightingStateFuture
 extends CoREHalResourceFuture<LightingState> {

 public void setRGB(int r, int g, int b) {
 LightingState representation = new LightingState();
 representation.setValue(new RGBValue(r,g,b));
 submitForm("edit", representation);
 }

}

Hypermedia Crawlers

24

• Abstract arbitrarily long link chains

• Can include metadata (and data) in link selection decision

Entry Point State Resource

thing = client.links().use(new ThingCrawler()) // returns crawler
 .findLocation("/CH/ETH/CAB/51") // metadata
 .findFirstWith("state") // link relation

crawl state

Location

Thing

Other

// defines algorithm

Links

• http://mkovatsc.github.io/iot-hypermedia/

• http://mkovatsc.github.io/core-hal-explorer/

• https://github.com/eclipse/californium.tools/tree/master/cf-polyfill

25

http://mkovatsc.github.io/iot-hypermedia/
http://mkovatsc.github.io/iot-hypermedia/
http://mkovatsc.github.io/iot-hypermedia/
http://mkovatsc.github.io/core-hal-explorer/
http://mkovatsc.github.io/core-hal-explorer/
http://mkovatsc.github.io/core-hal-explorer/
http://mkovatsc.github.io/core-hal-explorer/
http://mkovatsc.github.io/core-hal-explorer/
http://mkovatsc.github.io/core-hal-explorer/
https://github.com/eclipse/californium.tools/tree/master/cf-polyfill
https://github.com/eclipse/californium.tools/tree/master/cf-polyfill
https://github.com/eclipse/californium.tools/tree/master/cf-polyfill
https://github.com/eclipse/californium.tools/tree/master/cf-polyfill

HATEOAS Discussion

• Costs
• Higher design effort

• More Roundtrips

• Larger representation size

• Optimizations
• Caching

• Bookmarks

• Reduced representations

26

