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Research	Goals

• Investigate	design	patterns	for	interoperable	
hypertext	driven	machine	interfaces

• Investigate	RESTful	design	patterns	for	
sensing	and	actuation

• What	is	the	role	of	modeling	and	ontology	in	
semantic	interoperability?



Research	Topics

• Reference	System	Architecture	
• Content	Format	Design
• RESTful	Asynchronous	Communication
• RESTful	Actuation
• REST	Protocol	Abstraction
• Model	Based	Hypertext	Annotation
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Content	Format	Design

• What	should	a	content-format	describe?
• Representation	Formats
• Common	Interaction	Model
– Resource	model	e.g.	CoRE	Interfaces
– Data	model	e.g.	SenML
– How	links	work,	e.g.	CoRE	Link-Format
– How	forms	work
– How	relation	types	are	used
– Some	base	relation	types



Content	Format	Design
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Resource	Model
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Representation	Format	Example
{

"bn": "/light/onOff/currentState/",
"e": [

{
"vb": false,
"n": ""

}
],
"l": [

{
"href": "",
"rel": ["self","item"],
"rt": ["property", "currentstate"],
"ct": ["application/senml+json"]

}
]

}

Items	may	be	represented	in	SenML

Links	may	be	represented	in	CoRE	link-format



Forms

{
"anchor": "/light3/brightness/",
"rel": "invokeAction",          
"type": "change",
"method": "post",
"href": "actuations",
"accept": "application/hsml+json", 

}

To	"invokeAction"	of	type	"change"	on	the	
"/light3/brightness/"	resource,	perform	a	"post"	
to	the	resource	at	"/light3/brightness/actuations"	
using	the	"application/hsml+json"	content	format	



Link	and	Form	Relations

• Link	Relations
– "item"	(an	embedded	item	in	a	collection)
– "sub"	(a	subresource	item	in	a	collection)
– "form"	(a	form	item	in	a	collection)
– "grp"	(a	group	interaction	link)

• Form	Relations
– "addItem"	(add	an	item	to	a	collection)



RESTful	Asynchronous	Communication

• REST	interaction	is	a	state	machine	between	
client	and	server	– request	and	response

• Asynchronous	Communication	using	REST	is	
one	or	more	state	transition	responses	that	
take	place	after	a	request	is	made

• Two	classes	of	interaction:
– Between	resources	and	applications
– From	Resource	to	Resource



Resource	to	Application

• CoAP	Observe	is	a	RESTful	asynchronous	communication	
method

• Client	application	makes	state	changes	based	on	server	
responses

• Server	is	the	name	and	state	origin	of	the	resource
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Resource	to	Application

• PUT	or	POST	can	be	used	for	the	client	to	update	the	state	of	
the	server

• Client	application	changes	state	on	server	asynchronously
• Server	is	the	name	and	state	origin	of	the	resource
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Resource	to	Resource

• A	client	instance	may	be	"bound"	to	a	resource	and	perform	
state	transfer	between	it	and	another	resource

• Observe	binding	updates	the	state	of	the	locally	bound	
resource	based	on	responses	from	the	"boundTo"	resource

• Server	B	is	the	name	and	state	origin	of	the	resource
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Resource	to	Resource

• Push	binding	observes	the	state	of	the	locally	bound	
resource	and	updates	the	"boundTo"	resource

• Local	binding	may	incorporate	a	filter	and	may	be	forms-
capable

• Server	B	is	the	name	and	state	origin	of	the	resource
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Notification	Resource
• Collection	resource	to	capture	notifications	from	a	binding
• Binding	uses	POST	to	create	a	new	resource	in	the	collection	for	each	

notification
• Client	Application	can	observe	the	collection	for	new	notifications	being	

created	and	receive	representations
• Server	A	is	the	name	and	state	origin
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Promise+
• Pattern	for	application	scripts	to	handle	
recurring	events	like	notifications	from	
resource	observations

• Extends	the	Promise	pattern	with	an	update	
handler	for	recurring	events

res.observe().then(onResolve, onReject, onUpdate)
(…do other stuff)

onUpdate(value){
processStateUpdate(value)



HTTP	Observe
• Using	a	technique	based	on	HTML5	Server	Sent	
Events	(SSE)

• Header	"Transfer-Encoding:chunked"	enables	
open	TCP	connection	to	be	used	for	
asynchronous	messages

• Messages	could	be	formatted	as	HTTP	Response	
and	header	lines,	with	content-type	and	content-
length	controls

• Header	options	e.g.	Observe:0	could	be	used	to	
create	a	CoAP-compatible	observe	for	HTTP



RESTful	Actuation

• What	is	RESTful	actuation?
• Change	of	state	on	a	resource	that	has	some	
effect	in	the	physical	world

• Many	different	interpretations	of	this:
– Update	of	a	resource	directly	changes	physical	state	
– Update	of	a	resource	communicates	intended	state
– Creation	of	a	resource	that	describes	the	intended	
state	transition

– Update	of	a	setpoint	resource	of	a	controller



Update	State	Resource

• There	is	always	some	uncertainty,	e.g.	the	
physical	process	may	fail	or	be	delayed

• Will	the	state	returned	on	a	subsequent	read	
reflect	the	intended	state	or	the	actual	state?

• Intended	state	is	technically	RESTful	but	not	
useful

• Actual	state	is	useful	but	not	RESTful
• Delaying	the	response	until	intended	state	is	
observed	might	work…



Update	Intended	State	Resource

• This	will	be	both	RESTful	and	Useful	
• Allows	a	REST	response	to	be	generated	for	
the	intended	state	and	application	can	then	
monitor	observed	state	

• This	could	work,	but	what	about	where	we	
want	to	parameterize	execution	with	
transition	times,	etc?	How	do	we	know	if	the	
action	is	going	to	succeed	or	fail?



Create	a	State	Transition	Resource	

• This	is	RESTful	and	useful,	using	the	resource	
create	pattern	with	a	form,	and	returning	a	
resource	location	that	can	be	monitored	for	
state	changes

• Allows	asynchronous	notification	and	promise	
to	be	used	to	track	progress,	success,	failure	of	
running	actions,	also	to	modify	or	cancel

• Multiple	actions	may	be	queued



Controllers

• Thermostat	is	an	example	of	a	controller
• Temperature	setting	is	a	set-point	that	is	input	
to	a	controller	algorithm	that	decides	whether	
to	operate	an	actuator	based	on	the	
relationship	of	the	set-point	to	the	measured	
temperature,	and	perhaps	other	variables

• Thermostat	has	measurement	temperature	
and	set-point	temperature	inputs,	and	an	
actuator	state	output.	



REST	Protocol	Abstraction
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Dictionary	Mapping	of	
Common	REST	Transaction	Layer

{
"uriPath": ["/","a", "b"], 
"uriQuery": {"rt": "test", "obs": "true"}
"contentFormat": "application/link-format+json",
"options": {}
"method": "GET",
"payload": null,
"response": {

"status": "Success",
"contentFormat": "application/link-format+json",
"payload": "[{"href":"","rel":"self","rt":"test"}]"
}

}



Common	CRUD
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• Map	abstraction	to	HTTP	and	CoAP	request	and	responses
• Encapsulate	the	abstraction	in	WS	and	MQTT	payloads



Consistent	Resource	Identifiers:	
Cross-Protocol	Hyperlinking

http://example.com:8000/b31/env/light/onoff

coap://example.com:5683/b31/env/light/onoff

ws://example.com:80/b31/env/light/onoff

mqtt://example.com:1883/b31/env/light/onoff

Mapped	 to	URI

Mapped	 to	URI

Part	Topic	--- Part	Payload

Encapsulated	in	Payload



Model	Based	Hypertext	Annotation
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Domain	Schema	and	Model
• Reusable	terms	with	mayHave	and	usedBy	definitions
– “brightness”	is	used	by	“light”	but	not	“motion	sensor”
– “brightness”	may	have	“change”	action	but	not	“open”

class: brightness,
type: capability,
description: “brightness control”
usedBy: [ light ],
mayHave: [ 

currentBrightness, targetBrightness,
stepBrightness, moveBrightness, 
change, step, move, stop, 
propertyValueChange ],

params: {_
targetValue: _targetBrightness,
_stepSize: _stepBrightness,
_moveRate: _moveBrightness},}



Domain	Model	Example

"@context": "http://thingschema.org",
"resource": [
{

"type": "light",
"name": "light",
"capabilities": [

{
"type": "brightness",
"name": "brightness"

},
{
"type": "onoff",
"name": "onoff"

}



Demonstrator	and	Reference	
Implementation

• Machine	Hypermedia	Toolkit	is	an	open	
source	reference	implementation

https://github.com/connectIOT/MachineHypermediaToolkit

• Demonstrator	resource	on	Github	for	tutorial	
introduction

https://github.com/connectIOT/HypermediaDemo



Resources…
• These	slides
http://www.slideshare.net/MichaelKoster/research-topics-in-machine-hypermedia
• Blog	Article
http://iot-datamodels.blogspot.com/2015/10/hypermedia-design-for-machine-
interfaces.html
• Demo	Resource
https://github.com/connectIOT/HypermediaDemo
• Reference	Implementation	(work	in	progress)
https://github.com/connectIOT/MachineHypermediaToolkit
• CoRE	Interfaces
https://datatracker.ietf.org/doc/draft-ietf-core-interfaces/
• Link-Format
https://tools.ietf.org/html/rfc6690 ,	https://tools.ietf.org/html/draft-ietf-core-links-
json-04
• SenML-01
https://datatracker.ietf.org/doc/draft-jennings-core-senml/01/


