
Research	Topics	in	Machine	
Hypermedia	System	Design

IRTF	Thing	to	Thing	Research	Group
March	15,	2016

Research	Goals

• Investigate	design	patterns	for	interoperable	
hypertext	driven	machine	interfaces

• Investigate	RESTful	design	patterns	for	
sensing	and	actuation

• What	is	the	role	of	modeling	and	ontology	in	
semantic	interoperability?

Research	Topics

• Reference	System	Architecture	
• Content	Format	Design
• RESTful	Asynchronous	Communication
• RESTful	Actuation
• REST	Protocol	Abstraction
• Model	Based	Hypertext	Annotation

Reference	Architecture

Base	
Schema

Resource	
Model

Client	Application

Thing	Object	Model

(Deferred	Interface)

Domain	
Schema

Resources

Hypermedia	Controls

Discovery

Domain	
Model

Hypermedia	Client

Resource	Application

(Physical	I/O)

Networks
Server

Public	
Resource

Tools

Client

Content	Format	Design

• What	should	a	content-format	describe?
• Representation	Formats
• Common	Interaction	Model
– Resource	model	e.g.	CoRE	Interfaces
– Data	model	e.g.	SenML
– How	links	work,	e.g.	CoRE	Link-Format
– How	forms	work
– How	relation	types	are	used
– Some	base	relation	types

Content	Format	Design

Protocols

Representation	Formats

Common	 Interaction	Model

Application	Meta-Model

Application	Domain	Model

HTTP,	CoAP,	RD,	Web	Linking

SenML,	Link-Format,	HTML

Resources,	Links,	Forms,	Collections

Link	Relations,	Form	Relations

Resource	Types,	Ontology

hsml
content	type

describedBy
relation	type

Resource	Model

Link Item
Link Item
Link
Link

Link (self)

(sub)

Link

Collection

Link Item
Link
Link
Link

Form

Link Item
Sub	Resource	Collection

Collection

Link
Link

Collection

Link

Representation	Format	Example
{

"bn": "/light/onOff/currentState/",
"e": [

{
"vb": false,
"n": ""

}
],
"l": [

{
"href": "",
"rel": ["self","item"],
"rt": ["property", "currentstate"],
"ct": ["application/senml+json"]

}
]

}

Items	may	be	represented	in	SenML

Links	may	be	represented	in	CoRE	link-format

Forms

{
"anchor": "/light3/brightness/",
"rel": "invokeAction",
"type": "change",
"method": "post",
"href": "actuations",
"accept": "application/hsml+json",

}

To	"invokeAction"	of	type	"change"	on	the	
"/light3/brightness/"	resource,	perform	a	"post"	
to	the	resource	at	"/light3/brightness/actuations"	
using	the	"application/hsml+json"	content	format	

Link	and	Form	Relations

• Link	Relations
– "item"	(an	embedded	item	in	a	collection)
– "sub"	(a	subresource	item	in	a	collection)
– "form"	(a	form	item	in	a	collection)
– "grp"	(a	group	interaction	link)

• Form	Relations
– "addItem"	(add	an	item	to	a	collection)

RESTful	Asynchronous	Communication

• REST	interaction	is	a	state	machine	between	
client	and	server	– request	and	response

• Asynchronous	Communication	using	REST	is	
one	or	more	state	transition	responses	that	
take	place	after	a	request	is	made

• Two	classes	of	interaction:
– Between	resources	and	applications
– From	Resource	to	Resource

Resource	to	Application

• CoAP	Observe	is	a	RESTful	asynchronous	communication	
method

• Client	application	makes	state	changes	based	on	server	
responses

• Server	is	the	name	and	state	origin	of	the	resource

ServerClient

OBSERVE

Responses

Resource	to	Application

• PUT	or	POST	can	be	used	for	the	client	to	update	the	state	of	
the	server

• Client	application	changes	state	on	server	asynchronously
• Server	is	the	name	and	state	origin	of	the	resource

ServerClient

PUT/POST

Responses

Resource	to	Resource

• A	client	instance	may	be	"bound"	to	a	resource	and	perform	
state	transfer	between	it	and	another	resource

• Observe	binding	updates	the	state	of	the	locally	bound	
resource	based	on	responses	from	the	"boundTo"	resource

• Server	B	is	the	name	and	state	origin	of	the	resource

Server	BOBS
Bind

Observe

ResponsesServer	A

Resource	to	Resource

• Push	binding	observes	the	state	of	the	locally	bound	
resource	and	updates	the	"boundTo"	resource

• Local	binding	may	incorporate	a	filter	and	may	be	forms-
capable

• Server	B	is	the	name	and	state	origin	of	the	resource

Server	BPush	
Bind

PUT/POST

ResponsesServer	A
(obs)

Notification	Resource
• Collection	resource	to	capture	notifications	from	a	binding
• Binding	uses	POST	to	create	a	new	resource	in	the	collection	for	each	

notification
• Client	Application	can	observe	the	collection	for	new	notifications	being	

created	and	receive	representations
• Server	A	is	the	name	and	state	origin

POST	
BindServer	A

(obs)
Notifications Client

OBSERVE

Responses

Promise+
• Pattern	for	application	scripts	to	handle	
recurring	events	like	notifications	from	
resource	observations

• Extends	the	Promise	pattern	with	an	update	
handler	for	recurring	events

res.observe().then(onResolve, onReject, onUpdate)
(…do other stuff)

onUpdate(value){
processStateUpdate(value)

HTTP	Observe
• Using	a	technique	based	on	HTML5	Server	Sent	
Events	(SSE)

• Header	"Transfer-Encoding:chunked"	enables	
open	TCP	connection	to	be	used	for	
asynchronous	messages

• Messages	could	be	formatted	as	HTTP	Response	
and	header	lines,	with	content-type	and	content-
length	controls

• Header	options	e.g.	Observe:0	could	be	used	to	
create	a	CoAP-compatible	observe	for	HTTP

RESTful	Actuation

• What	is	RESTful	actuation?
• Change	of	state	on	a	resource	that	has	some	
effect	in	the	physical	world

• Many	different	interpretations	of	this:
– Update	of	a	resource	directly	changes	physical	state	
– Update	of	a	resource	communicates	intended	state
– Creation	of	a	resource	that	describes	the	intended	
state	transition

– Update	of	a	setpoint	resource	of	a	controller

Update	State	Resource

• There	is	always	some	uncertainty,	e.g.	the	
physical	process	may	fail	or	be	delayed

• Will	the	state	returned	on	a	subsequent	read	
reflect	the	intended	state	or	the	actual	state?

• Intended	state	is	technically	RESTful	but	not	
useful

• Actual	state	is	useful	but	not	RESTful
• Delaying	the	response	until	intended	state	is	
observed	might	work…

Update	Intended	State	Resource

• This	will	be	both	RESTful	and	Useful	
• Allows	a	REST	response	to	be	generated	for	
the	intended	state	and	application	can	then	
monitor	observed	state	

• This	could	work,	but	what	about	where	we	
want	to	parameterize	execution	with	
transition	times,	etc?	How	do	we	know	if	the	
action	is	going	to	succeed	or	fail?

Create	a	State	Transition	Resource	

• This	is	RESTful	and	useful,	using	the	resource	
create	pattern	with	a	form,	and	returning	a	
resource	location	that	can	be	monitored	for	
state	changes

• Allows	asynchronous	notification	and	promise	
to	be	used	to	track	progress,	success,	failure	of	
running	actions,	also	to	modify	or	cancel

• Multiple	actions	may	be	queued

Controllers

• Thermostat	is	an	example	of	a	controller
• Temperature	setting	is	a	set-point	that	is	input	
to	a	controller	algorithm	that	decides	whether	
to	operate	an	actuator	based	on	the	
relationship	of	the	set-point	to	the	measured	
temperature,	and	perhaps	other	variables

• Thermostat	has	measurement	temperature	
and	set-point	temperature	inputs,	and	an	
actuator	state	output.	

REST	Protocol	Abstraction

Application	Logic

Common	CRUD	Requests

MQTT

Common	CRUD	Responses

Resource	Model

Resources

Resource	Model

Thing	Object	Model

HTTP CoA
P

Common	Server

Common	Client

Pluggable	
Protocols

Resource	Logic

WS

Dictionary	Mapping	of	
Common	REST	Transaction	Layer

{
"uriPath": ["/","a", "b"],
"uriQuery": {"rt": "test", "obs": "true"}
"contentFormat": "application/link-format+json",
"options": {}
"method": "GET",
"payload": null,
"response": {

"status": "Success",
"contentFormat": "application/link-format+json",
"payload": "[{"href":"","rel":"self","rt":"test"}]"
}

}

Common	CRUD

(IP)

Send/Rcv

(PHY)

Send/Rcv

URI Topic,	URI

(IP)

Send/Rcv

(PHY)

(IP)

Pub/Sub

(PHY)

(IP)

Trx

(PHY)

URIURI

REST REST REST

CoAP HTTP MQTT WS CCML

URI

RESTREST

• Map	abstraction	to	HTTP	and	CoAP	request	and	responses
• Encapsulate	the	abstraction	in	WS	and	MQTT	payloads

Consistent	Resource	Identifiers:	
Cross-Protocol	Hyperlinking

http://example.com:8000/b31/env/light/onoff

coap://example.com:5683/b31/env/light/onoff

ws://example.com:80/b31/env/light/onoff

mqtt://example.com:1883/b31/env/light/onoff

Mapped	 to	URI

Mapped	 to	URI

Part	Topic	--- Part	Payload

Encapsulated	in	Payload

Model	Based	Hypertext	Annotation

PropertyEvent Action

(Capability)

Subscription

Notification

Actuation

Thing

Index

Capability

Notification

Capability

Index

has

pointsTo

Domain	Schema	and	Model
• Reusable	terms	with	mayHave	and	usedBy	definitions
– “brightness”	is	used	by	“light”	but	not	“motion	sensor”
– “brightness”	may	have	“change”	action	but	not	“open”

class: brightness,
type: capability,
description: “brightness control”
usedBy: [light],
mayHave: [

currentBrightness, targetBrightness,
stepBrightness, moveBrightness,
change, step, move, stop,
propertyValueChange],

params: {_
targetValue: _targetBrightness,
_stepSize: _stepBrightness,
_moveRate: _moveBrightness},}

Domain	Model	Example

"@context": "http://thingschema.org",
"resource": [
{

"type": "light",
"name": "light",
"capabilities": [

{
"type": "brightness",
"name": "brightness"

},
{
"type": "onoff",
"name": "onoff"

}

Demonstrator	and	Reference	
Implementation

• Machine	Hypermedia	Toolkit	is	an	open	
source	reference	implementation

https://github.com/connectIOT/MachineHypermediaToolkit

• Demonstrator	resource	on	Github	for	tutorial	
introduction

https://github.com/connectIOT/HypermediaDemo

Resources…
• These	slides
http://www.slideshare.net/MichaelKoster/research-topics-in-machine-hypermedia
• Blog	Article
http://iot-datamodels.blogspot.com/2015/10/hypermedia-design-for-machine-
interfaces.html
• Demo	Resource
https://github.com/connectIOT/HypermediaDemo
• Reference	Implementation	(work	in	progress)
https://github.com/connectIOT/MachineHypermediaToolkit
• CoRE	Interfaces
https://datatracker.ietf.org/doc/draft-ietf-core-interfaces/
• Link-Format
https://tools.ietf.org/html/rfc6690 ,	https://tools.ietf.org/html/draft-ietf-core-links-
json-04
• SenML-01
https://datatracker.ietf.org/doc/draft-jennings-core-senml/01/

