An Introduction to
Bluetooth low energy

Robin Heydon, Senior Director, Technology
Qualcomm Technologies International, Ltd.

What is Bluetooth low energy
What are the important features?

How does it work?
What are the next steps?

What is it good for today?
What else can you do with it?

What is low energy?

3
It is a new technology

blank sheet of paper design
optimized for ultra low power

different to Bluetooth classic

New Technology?

Yes
efficient discovery / connection procedures
very short packets
asymmetric design for peripherals
client server architecture

No
reuse existing BR radio architecture
reuse existing HCI logical and physical transports
reuse existing L2CAP packets

Basic Concepts

Design for success
able to discover thousands of devices in local area
unlimited number of slaves connected to a master
unlimited number of masters
state of the art encryption

security including privacy / authentication /
authorization

class leading robustness, data integrity
future proof

Basic Concepts

Everything has STATE
devices expose their state
these are servers

Clients can use the state exposed on servers
read it — get current temperature
write it — increase set point temperature for room

Servers can tell clients when state updates
notify it — temperature up to set point

Stack Architecture

Applications

Generic Access Profile
Generic Attribute Profile

Attribute Protocol Security Manager

Logical Link Control and Adaptation Protocol

Host Controller Interface

Link Layer Direct Test Mode
Controller

Physical Layer

Physical Layer

Applications

Apps

Generic Access Profile

Generic Attribute Profile

Attribute Protocol Security Manager

Logical Link Control and Adaptation Protocol

Host

Host Controller Interface

Link Layer Direct Test Mode

Physical Layer

—
N—/

Controller

Physical Layer

Uses 2.4 GHz ISM Band
Industrial Scientific Medical band
License Free — with certain rules

2400 MHz to 2483.5 MHz

Used by many other standards
IEEE 802.11, IEEE 802.15
and many proprietary radios

s € ZHIN 082
I 8e ZHIN 8.1
L ZHIN 9.4
e T ZHIN ¥.¥T
s se ZHIN 2L¥¢
I e ZHIN 012
Iy ce ZHIN 89V2
.z ZHIN 9912
1 ZHIN Y9V
o€ ZHIN Z9V2
e T ZHIN 09%2
s 8%z ZHIN 8512
s 2 ZHIN 9s¥C
e T ZHIN +5¥C

N e sz ZHIN 2512
EElE ZHIN 0S¥2
= -~ €T ZHN 8T
e I ZHIN 9b¥T
N ZHIN YiiT
N s 02 ZHIN ZPiT
+ s 6l ZHIN OV¥T
QUEE) ZHIN 8EVT
M s L ZHIN 9¢eve

n BN S 9 ZHIN yeve

@ [——
-

C g i ZHIN 8Z#

m il ZHIN 9ZhZ

- W ZHIN ¥2ve

O s ok ZHIN 2Ty
S 6 ZHIN 0242

- s 8 ZHIN 8L¥T

O e ZHIN 91¥¢

e S 9 ZHIN y1vC

S s s ZHIN ZI¥T

= s v ZHIN 0L¥C

0 I ZHIN 80¥¢C
e ZHIN 90V

M e ZHIN 01T
o ZHIN 20ve

4y Aouanbaig

Modulation

GFSK Modulation
bit period product BT = 0.5
modulation index = 0.5 £ 0.05

PHY Bandwidth = 1 million bits / seconds

Why GFSK?
“pulse shaping”
Gaussian filter smoothes transitions from zero to one
reduces spectral width

PHY Summary

2.4 GHz GFSK
Modulation Index = ~0.5

40 channels
2 MHz channel spacing
2402 MHz to 2480 MHz

Range
50m to further than 150 m

Layer Layer

Applications

Apps

Generic Access Profile

Generic Attribute Profile

Attribute Protocol Security Manager

Logical Link Control and Adaptation Protocol

Host

Host Controller Interface

)

Link Layer] Direct Test Mode

Physical Layer

Controller

Link Layer (LL)

Link Layer State Machine
can have multiple state machines active in device

Link Layer Channels
Advertising Channels & Data Channels
Advertising Packets & Data Packets

Link Layer Control Procedures

Link Layer State Machine

Master

Two Types of Channels

Advertising Channels
Advertising Channel Packets
Used for Discoverability / Connectability
Used for Broadcasting / Observing

Data Channels
Data Channel Packets
Used to send application data in Connection

— i ZHIN 082
T ZHIN 8.1
s se ZHIN 9.4
s e ZHIN ¥.¥T
sy et ZHIN 2L¥¢
e ZHIN 012
¢ e ZHIN 89V2
F D ZHIN 99V2
C ——e 62 ZHIN Y9V
C o 82 ZHIN Z9V2
.Mua S e ZHIN 09¥¢
S — ZHIN 8512

e T ZHIN 9s¥C
S o 2 ZHIN +5¥C
O s €2 ZHIN 2512
O s 2 ZHIN 0S¥2
N o ie ZHIN 81T
) S 0 ZHIN 9b¥T
O e 6l ZHIN YiiT
m s e ZHIN Z¥he
P e Y ZHIN 0¥¥e
i] ZHIN 8EVT
C S Sl ZHIN 9€VT
C s v ZHIN yeve

N O s €l ZHIN Z€¥e

o .Pnu e ard) ZHIN 0€¥2

= T ZHIN 8z¥e

- mu - S ZHIN 9Z¥2

c B s ok ZHIN ¥2ve

(el .= e 6 ZHIN 2Ty

SN & . s ZHIN 0292

i > —eaa L ZHIN 8L¥T

ol © ——ssmmm 9 ZHIN 91¥¢

Y < s S ZHIN y1vC

O Qg ZHIN 21y

] s € ZHIN 0L¥C

v’ I ZHIN 80¥¢C

c —_— ZHIN 90V

5 s o ZHIN Y0V
—_— ZHIN 20ve

171 Aoudnbaig

Frequency LL
2402 MHz

Link Layer Channels

3 Advertising Channels

38

2426 MHz

2480 MHz

e T ZHIN 8.¥2
s s ZHIN 9142
. e ZHIN ¥.¥2
et ZHIN ¢lve
s e ZHIN 0¥
s e ZHIN 8912
e oc ZHIN 9912
s 6e ZHIN Y91
s 8z ZHIN 29%2
s e ZHIN 09¥C
s 92 ZHIN 86172
s se ZHIN 95¥¢
s e ZHIN +5¥C
s ez ZHIN 2612

O o e ZHIN 0672
QO I 12 ZHIN 81T
m s 0z ZHIN 9T
(C —— 6l ZHIN ¥¥he
C e 8l ZHIN 2vve
O s L ZHIN 0F¥e
(C e 9l ZHIN 8¢¥T
ol ZHIN 9¢ve
O -~ vl ZHIN €V

N . e € ZHIN ZehT

O i eee—— 4 ZHIN 0S¥Z

= v ZHIN 821

c

© s ok ZHIN ¥Zve

L) ZHIN ¢eve

O S 8 ZHIN 0292

r S L ZHIN 8112

o 0 ZHIN 91¥2

> e ZHIN ¥1¥C

(3] s v ZHIN CIve

| S ¢ ZHIN 0L¥C

i’ - ¢ ZHIN 80¥¢

— s ZHIN 90¥2

5 s o ZHIN 01T

171 Aoudnbaig

— i ZHIN 082
T ZHIN 8.¥¢C
e s ZHIN 9.4
s e ZHIN ¥.¥C

ee ZHIN 2.4

&% ZHIN 0.¥C

K ZHIN 89

0¢ ZHIN 99%¢C

6C ZHIN 9%

8z ZHIN Z9%¢C
b 1z ZHIN 09%C
= 92 ZHIN 8S#C
S 62 ZHIN 9S¥C
— A ZHIN ¥SHC
C s €2 ZHWN 2512
C e ZHIN 0S¥
— o le ZHIN 81T
= 0z ZHIN 9Fe
e 6l ZHIN vhe
5 8l ZHIN Z¥he
P Ll ZHIN 0FC
c 91 ZHIN 8%
Qv Gl ZHIN 9£HC
.Pnu bl ZHIN ¥EbT

7)) ¢l ZHIN Z€HT

rm ®© 4} ZHIN 0S¥C

= © L ZHIN 82

c =R b ZHIN 92¥2

o — s ol ZHIN Zre

=l — 6 ZHIN Z2he

O Kz 8 ZHIN 025

g L ZHIN 81L¥C

o 9 ZHIN 91¥C

S G ZHIN V19T
© b ZHIN ZL¥T

- ¢ ZHIN 0L¥C

¢ 4 ZHIN 80%¢C

c l ZHIN 90¥C

" 0 ZHIN ¥0¥C
—_— ZHIN Z0¥T

171 Aoudnbaig

One Packet Format

Not Whitened

Whitened
A

Preamble

Access Address

|
Protected by CRC

Passive Scanning

Advertiser

<

Scanner
LE Advertising Report |« ADV_IND
> ADV_IND
< ADV_IND
< ADV_IND
LE Advertising Report [ADV_IND
— > ADV_IND

Active Scanning

Scanner Advertiser
. ADV_IND
SCAN_REQ >
SCAN_RSP

LE Advertising Report |«

Initiating Connections

Initiator

ADV_IND

Advertiser

CONNECT_REQ

< LE Connection Complete

Data Channel PDU

LE Connection Complete >

Data Channel PDU

Data Channel PDU

Data Channel PDU

Directed Connections

Initiator

ADV_DIRECT_IND

Advertiser

ADV_DIRECT_IND

ADV_DIRECT_IND

ADV_DIRECT_IND

A A A A A

ADV_DIRECT_IND

< LE Connection Complete

CONNECT_REQ

Data Channel PDU

»| LE Connection Complete

Data Channel PDU

Topology

Advert-

¥,
\

m VESET
M Scanner

Advert-
Advert- iser
iser

Topology

Advert-

@ iser
m Master/ @
Initiator %
@,

H § Advert-
Advert- iser
@ iser

Topology

Advert-
iser

Master/ @
M Scanner

Advert
|ser

A single master can address ~231 slaves
~ 2 billion addressable slaves per master

Max Connection Interval = 4.0 seconds

Can address a slave every ~ 5 ms (assuming 250 ppm
clocks)

~ 800 active slaves per master

Connections

Used to send application data
reliably, robustly

Includes
ultra low power connection mode
adaptive frequency hopping
connection supervision timeout

Connection Events

Each connection event uses a different channel
f .4 = (f, + hop) mod 37

Connection
Events

< /\ —>

fn fn+1 fn+2 fn+3

je >}e >le >»] Time

Connection Connection Connection
Interval Interval Interval

Master Latency
how often the master will transmit to slave

Slave Latency
how often the slave will listen to master

The two latencies don’t have to be the same
Master Latency = Connection Interval (7.5 ms to 4.0 s)
Slave Latency = Connection Interval * Slave Latency

Connection Events

More Data bit automatically extends connection
events

Connection
Events

je >le >le >»] Time

Connection Connection Connection
Interval Interval Interval

Maximum Data Rate

Asymmetric Tx/Rx Packet Sequence
328 + 150 + 80 + 150 = 708 ps
Transmitting 27 octets of application data

~305 kbps

|

Adaptive Frequency Hopping

Frequency Hopping algorithm is very simple
f.+1 = (f, + hop) mod 37

If fn is a “used” channel, use as is

If fn is an “unused” channel, remap to set of good
channels

alalall

Link Layer Control Procedures

Name ___________|Descripton

Connection Update Procedure
Channel Map Update Procedure
Encryption Start Procedure
Encryption Pause Procedure
Feature Exchange Procedure
Version Exchange Procedure
Termination Procedure

Update the connection intervals

Update the adaptive frequency hopping map
Start encryption using a Long Term Key
Pause encryption, to change Long Term Key
Exchange the current supported feature set
Exchange the current version information
Voluntary terminate the connection

Control PDU Name

LL_CONNECTION_UPDATE_REQ Update Connection Intervals

0x00
0X01
0X02
0X03
0X04
0x05
0x06
0x07
0x08
0x09
0x0A
0x0B
0x0C
0x0D

LL_CHANNEL_MAP_REQ
LL_TERMINATE_IND
LL_ENC_REQ
LL_ENC_REQ
LL_START_ENC_REQ
LL_START_ENC_RSP
LL_UNKNOWN_RSP
LL_FEATURE_REQ
LL_FEATURE_RSP
LL_PAUSE_ENC_REQ
LL_ PAUSE_ENC_RSP
LL_VERSION_IND

LL_ REJECT_IND

Update Channel Maps

Disconnect the connection

Encryption Request

Encryption Response

3-way Handshake for Starting Encryption
3-way Handshake for Starting Encryption
Control PDU Unknown

Master sends Features to Slave

Slave sends Features to Master

Pause Encryption to Refresh Keys

Pause Encryption to Refresh Keys

Version Exchange
Reject Control PDU

Link Layer Encryption

Uses AES 128 encryption block
and CCM as defined by RFC 3610

Payload, 15 encrypted Payloads,; encrypted MAC encrypted
with Block A4 with Block A, with Block Ay

A A A

2
o
£
(3]
(<]
[
o

Access Address
Data Header
L2CAP CID

L2CAP Length

Maximum 239 packets per LTK per direction
Each packet can contain up to 27 octets data
Max 13.5 Terabytes of data per connection
~12 years at maximum data rate

Then you have to change the encryption key
using Restart Encryption Procedure

Link Layer Summary

Low Complexity
1 packet format
2 PDU types — depending on Advertising / Data Channel
7/ Advertising PDU Types
7 Link Layer Control Procedures

Useful Features
Adaptive Frequency Hopping
Low Power Acknowledgement
Very Fast Connections

Physical Layer

Applications Apps
Generic Access Profile
Generic Attribute Profile
. | Host
Attribute Protocol Security Manager
[Logical Link Control and Adaptation Protocol]
Host Controller Interface
Link Layer Direct Test Mode
| ke Contoler

L2CAP

Logical Link Control and Adaptation Protocol

protocol multiplexer
segmentation and reassembly

Provides logical channels
multiplexed over one or more logical links

L2CAP Packets

All application data is sent using L2CAP packets
Length is the length of the L2ZCAP Information Payload
CID is the destination logical channel

CIDs can be either
fixed channels
connection oriented channels

Fixed L2CAP Channels

CIDs from 0x0001 to OxO03F are fixed channels
0x0040 to OxFFFF are dynamically allocated

0x0000
0x0001
0x0002
0x0003
0x0004
0x0005
0x0006

Null identifier

L2CAP Signaling Channel
Connectionless Channel

AMP Manager Protocol
Attribute Protocol

LE L2CAP Signaling Channel
Security Manager Protocol

Not used (ever)

Used over BR/EDR
Used over BR/EDR
Used over BR/EDR
Used over LE only
Used over LE only
Used over LE only

Connection Oriented Channels

New feature in v4.1
allows a connection oriented channels
proposed to be used for “Object Transfer”

Attribute Protocol

Applications

Apps

Generic Access Profile

Generic Attribute Profile

[Attribute Protocol] Security Manager

Logical Link Control and Adaptation Protocol

Host

Host Controller Interface

Link Layer Direct Test Mode
Physical Layer

Controller

Attribute Protocol (ATT)

Client Server Architecture
servers have data
clients request data to/from servers

Protocol Methods
request, response, command,
notification, indication, confirmation

Client Server Architecture

Servers have data, Clients want to use this data

Servers expose Data using Attributes

Requests

Responses

Servers Expose Data Using Attributes

Attributes have values
array of octets
0 to 512 octets in length
can be fixed or variable length

Value

0x54656d70657261747572652053656e7 3672
0x04
0x0802

Attributes are Addressable

Each attribute has a “handle”
used to address an individual attribute by a client

Clients use handles to address attributes
Read (0x0022) => 0x04 ; Read (0x0098) => 0x0802

Handle
0x0009 0x54656d70657261747572652053656€7 36f7 2
0x0022 0x04

0x0098 0x0802

Attributes are Typed

Attributes have a type
type is a «UUID», determines what the value means

Types are defined by “Characteristic Specifications”
or Generic Access Profile or Generic Attribute Profile

Handle [Type ___ Vale

0x0009 «Device Name» 0x54656d7065726174757 26520536 56e7 36f7 2
0x0022 «Battery State» 0x04
0x0098 «Temperature» 0x0802

Attributes are Typed

«Device Name»
defined by GAP
formatted as UTF-8

0x54656d70657261747572652053656e736f72 =
“Temperature Sensor”

Handle [Type ___ Vale

0x0009 «Device Name» “Temperature Sensor”
0x0022 «Battery State» 0x04
0x0098 «Temperature» 0x0802

Attributes are Typed

«Battery State»
defined by “Battery State Characteristic” specification
enumerated value

0x04 = Discharging

Handle [Type ___ Vale

0x0009 «Device Name» “Temperature Sensor”
0x0022 «Battery State» Discharging
0x0098 «Temperature» 0x0802

Attributes are Typed

« Temperature»
defined by “Temperature Characteristic” specification
Signed 16 bit Integer in 0.01 °C

0x0802 = 2050 * 0.01 °C = 20.5 °C

Handle [Type ___ Vale

0x0009 «Device Name» “Temperature Sensor”
0x0022 «Battery State» Discharging
0x0098 «Temperature» 20.5°C

Attributes Type

Type is a «UUID»
UUIDs are 128 bits in length

Bluetooth defines a Bluetooth Base UUID
allowing a 16 bit «UUID» to be defined

00000000-0000-1000-8000-00805F9B34FB

Same Bluetooth Base UUID as SDP

Attribute Type

Type is a «UUID»
UUIDs are 128 bits in length

Bluetooth defines a Bluetooth Base UUID
allowing a 16 bit «UUID» to be defined

0000xxxx-0000-1000-8000-00805F9B34FB

Attribute Type

Type is a «UUID»
UUIDs are 128 bits in length

Bluetooth defines a Bluetooth Base UUID
allowing a 16 bit «UUID» to be defined

00001234-0000-1000-8000-00805F9B34FB
= 16 bit UUID 0x1234

Attribute Handle

Handle is a 16 bit value
0x0000 is reserved — shall never be used
0x0001 to OxFFFF can be assigned to any attributes

Handles are “sequential”
0x0005 is “before” 0x0006
0x0104 is “after” OxOOF8

Attribute Type

Type is a «UUID»
UUIDs are 128 bits in length

Bluetooth defines a Bluetooth Base UUID
allowing a 16 bit «UUID» to be defined

0000xxxx-0000-1000-8000-00805F9B34FB

Attribute Permissions

Attributes values may be:
readable / not readable
writeable / not writeable
readable & writeable / not readable & not writeable

Attribute values may require:
authentication to read / write
authorization to read / write

encryption / pairing with sufficient strength to read /
write

Attribute Permissions

Permissions not “discoverable” over Attribute Protocol
determined by implication

If request to read an attribute value that cannot be read
Error Response «Read Not Permitted»

If request to write an attribute value that requires
authentication

Error Response «lInsufficient Authentication»
Client must create authenticated connection and then retry
There is no “pending” state

Attribute Permissions

Attribute Handles are public information
Attribute Types are public information
Attribute Values can be protected

It is up to the server to not reveal any values that it
considers are protected to a client it does not “trust”
enough

Server responds by saying what is wrong — not with
value

Insufficient Authentication / Authorization / Key Size
Read / Write Not Permitted

Logical Attribute Representation

implementation
2 octets 2 or 16 octets variable length (0 to 512 octets) specific

A A A A

Protocol Methods

Request
Response
Command
Notification
Indication

Confirmation

Client
Server
Client
Server

Server

Client

Client requests something from server — always causes a response
Server sends response to a request from a client

Client commands something to server — no response

Server notifies client of new value — no confirmation

Server indicates to client new value — always causes a confirmation

Confirmation to an indication

Protocol is Stateless

After transaction complete
no state is stored in protocol

A transaction is:
Request -> Response
Command
Notification
Indication -> Confirmation

Sequential Protocol

Client can only send one request at a time
request completes after response received in client

Server can only send one indication at a time

indication completes after confirmation received in
server

Commands and Notifications are no response /
confirmation

can be sent at any time

could be dropped if buffer overflows — consider
unreliable

Atomic Operations

Each request / command is an atomic operation
cannot be affected by another client at the same time

If link is disconnected halfway through a transaction
value of attribute(s) undefined

there is no “rollback” or “transactional processing”

Attribute Grouping

Generic Attribute Profile defines a concept of Grouping
Grouping is done by Attribute Type

«Grouping Type»
«Another Grouping Type»
«Data»
«Data»
«Another Grouping Type»
«Data»
«Data»
«Grouping Type»
«Data»
«Another Grouping Type»
«Data»
«Data»

Attribute Grouping

Generic Attribute Profile defines a concept of Grouping
Grouping is done by Attribute Type

«Secondary Service»
«Characteristic»
«Data»
«Data»
«Characteristic»
«Data»
«Data»
«Primary Service»
«Include»
«Characteristic»
«Data»
«Data»

Name __________ |Descripon

Error Response

Exchange MTU Request / Response
Find Information Request / Response
Find By Type Value Request / Response
Read By Group Type Request / Resposne
Read By Type Request / Response
Read Request / Response

Read Blob Request / Response

Read Multiple Request / Response
Write Command

Write Request / Response

Prepare Write Request / Response
Execute Write Request / Response
Handle Value Notification

Handle Value Indication / Confirmation

Something was wrong with a request
Exchange new ATT_MTU

Find information about attributes
Find specific attributes

Find specific group attributes and ranges
Read attribute values of a given type
Read an attribute value

Read part of a long attribute value
Read multiple attribute values

Write this — no response

Write an attribute value

Prepare to write a value (long)

Execute these prepared values
Notify attribute value —no confirmation
This attribute now has this value

Invalid Handle

Read Not Permitted

Write Not Permitted

Invalid PDU

Insufficient Authentication
Request Not Supported
Invalid Offset

Insufficient Authorization
Prepare Queue Full
Attribute Not Found

Attribute Not Long
Insufficient Encryption Key Size
Invalid Attribute Value Length
Unlikely Error

Insufficient Encryption

Application Error

for example handle = 0x0000

not readable attribute : permissions

not writeable attribute : permissions

PDU was invalid — wrong size?

needs authentication : permissions
server doesn’t support request

offset beyond end of attribute

need authorization : permissions

server has run out of prepare queue space
no attributes in attribute range found
should use Read requests

needs encryption key size : permissions
value written was invalid size

something went wrong — oops

needs encryption : permissions
application didn’t like what you requested

Attribute Protocol Summary

Exposes Data using Typed, Addressable Attributes
Handle

Type
Value

Methods for finding, reading, writing attributes by client

Methods for sending notifications / indications by server

Generic Attribute Protocol (GATT)

Physical Layer

Applications Apps
Generic Access Profile
[Generic Attribute Profile]
. | Host
Attribute Protocol Security Manager
Logical Link Control and Adaptation Protocol
Host Controller Interface
Link Layer Direct Test Mode
| ke Contoler

Generic Attribute Protocol (GATT)

Defines concepts of:
Service Group
Characteristic Group
Declarations
Descriptors

Does not define rules for their use
this is separate but essential to understand

CLIENT SERVER ARCHITECTURE

Same client server architecture as Attribute Protocol

Client

Requests

Responses

Client Server Architecture

Same client server architecture as Attribute Protocol
except that data is encapsulated in “Services”
and data is exposed in “Characteristic”

R t Service

equests

] > Service
Responses

Service

What is a Characteristic

It's a value, with a known type, and a known format
defined in a “Characteristic Specification”

Characteristic Declaration
Characteristic Value Declaration

Characteristic Descriptors

Descriptor

Descriptor

What is a Characteristic

Characteristics are grouped by «Characteristic»

Value attribute is always immediately after
«Characteristic»

followed by descriptors

«Characteristic»
Descriptors
additional information
any number «Presentation Formaty
any order

can be vendor specific «Client Configuration»

What is a Service?

A service Is:
defined in a “Service Specification”
collection of characteristics
references to other services

Service Declaration
Includes
Characteristics

Two types of service:

Primary Service

A primary service is a service that exposes primary usable
functionality of this device. A primary service can be included by
another service.

Secondary Service

A secondary service is a service that is subservient to another
secondary service or primary service. A secondary service is only
relevant in the context of another service.

Attribute are Flat

bande Jtpe v pemisoms_

0x0001 «Primary Service» «GAP» R
0x0002 «Characteristic» {r, 0x0003, «Device Name»} R
0x0003 «Device Name» “Temperature Sensor” R
0x0004 «Characteristicy {r, 0x0006, «Appearancey} R
0x0006 «Appearance» «Thermometer» R
0x000F «Primary Service» «GATT» R
0x0010 «Characteristic» {r, 0x0012, «Attribute Opcodes R
Supported»}

0x0012 «Attribute Opcodes Supported» 0x00003FDF R
0x0020 «Primary Service» «Temperature»

0x0021 «Characteristicy {r, 0x0022, «Temperature Celsius»} R

0x0022 «Temperature Celsius» 0x0802 R*

GATT Provides Structure

Grouping Gives Structure

0x0001
0x0002
0x0003
0x0004
0x0006
0x000F
0x0010

0x0012

0x0020
0x0021
0x0022

«Primary Service»
«Characteristic»
«Device Name»
«Characteristic»
«Appearance»
«Primary Service»

«Characteristic»

«Attribute Opcodes
Supportedy

«Primary Service»
«Characteristic»

«Temperature Celsius»

«GAP»

{r, 0x0003, «Device Namen»}
“Temperature Sensor”

{r, 0x0006, «Appearance»}
«Thermometer»

«GATT»

{r, 0x0012, «Attribute Opcodes
Supported»}

0x00003FDF

«Temperature»
{r, 0x0022, «Temperature Celsius»}
0x0802

A X0 XU XU XU AU X4

R*

Grouping Gives Structure

0x0001
0x0002
0x0003
0x0004
0x0006
0x000F
0x0010

0x0012

0x0020
0x0021
0x0022

«Primary Service»
«Characteristic»
«Device Name»
«Characteristic»
«Appearance»
«Primary Service»

«Characteristic»

«Attribute Opcodes
Supportedy

«Primary Service»
«Characteristic»

«Temperature Celsius»

«GAP»

{r, 0x0003, «Device Namen»}
“Temperature Sensor”

{r, 0x0006, «Appearance»}
«Thermometer»

«GATT»

{r, 0x0012, «Attribute Opcodes
Supported»}

0x00003FDF

«Temperature»
{r, 0x0022, «Temperature Celsius»}
0x0802

A XU XU XU XU AU X

R*

Grouping Gives Structure

0x0001 «Primary Service» «GAP» R
0x0002 «Characteristic» {r, 0x0003, «Device Name»} R
0x0003 «Device Name» “Temperature Sensor” R
0x0004 «Characteristic» {r, 0x0006, «Appearance»} R
0x0006 «Appearance» «Thermometer» R
0x000F «Primary Service» «GATT» R
0x0010 «Characteristic» {r, 0x0012, «Attribute Opcodes R
Supported»}
0x0012 «Attribute Opcodes 0x00003FDF R
Supported»

0x0020 «Primary Service» «Temperature» R
0x0021 «Characteristic» {r, 0x0022, «Temperature Celsius»}

0x0022 «Temperature Celsius» 0x0802 R*

Procedure

Server Configuration

Primary Service Discovery

Relationship Discovery
Characteristic Discovery

Characteristic Descriptor Discovery
Characteristic Value Read

| Sub-Procedures

Exchange MTU

Discovery All Primary Service
Discover Primary Service by Service UUID

Find Included Services

Discover All Characteristics of a Service
Discover Characteristics by UUID

Discover All Characteristic Descriptors

Read Characteristic Value

Read Using Characteristic UUID
Read Long Characteristic Values
Read Multiple Characteristic Values

86

Procedure
Characteristic Value Write

Characteristic Value Notifications
Characteristic Value Indications

Characteristic Descriptors

Sub-Procedures

Write Without Response

Write Without Response With Authentication
Write Characteristic Value

Write Long Characteristic Values

Reliable Writes

Notifications
Indications

Read Characteristic Descriptors
Read Long Characteristic Descriptors
Write Characteristic Descriptors
Write Long Characteristic Desc

87

GENERIC ACCESS PROFILE

Applications

Apps

Generic Access Profile

—
N—/

Generic Attribute Profile

Attribute Protocol Security Manager

Logical Link Control and Adaptation Protocol

Host

Host Controller Interface

Link Layer Direct Test Mode

Physical Layer

Controller

Generic Access Profile (GAP)

Profile Roles
Broadcaster, Observer
Peripheral, Central

Defines standard ways for devices to connect
Discoverable, Connectable, Bonding

Privacy
Resolvable Private Addresses

Link Layer State Machines

for Broadcaster and Observer

Broadcaster Observer

Scanning

Standby

Advertising Standby

Link Layer State Machines

for Peripheral and Central

Peripheral Central

Advertising Standby

Standby Initiating

Connection

Connection

Master

Advertising Data

« Can be sent when broadcaster / discoverable peripheral

Many Advertising Data (AD) Types defined:
 Flags

« Service UUIDs

 Local Name

« TXPower Level

« Slave Connection Interval Range

« Signed Data

» Service Solicitation

« Service Data

« Manufacturer Specific Data

Flags

Non-complete list of 16-bit Service UUIDs
Complete list of 16-bit Service UUIDs
Non-complete list of 128-bit Service UUIDs
Complete list of 128-bit Service UUIDs
Non-complete shortened local name
Complete local name

Tx Power Level (-127 dBm to +127 dBm)
Slave Connection Interval Range (min, max)
Service Solicitation for 16 bit Service UUIDs
Service Solicitation for 128 bit Service UUIDs

Service Data (16 bit Service UUID, service data)

Manufacturer Specific Data (Company Identifier Code, data)

What can Discover What?

No Yes No

No Yes Yes

Connectable Modes - Peripheral

Non-Connectable Mode
not connectable — default mode

Directed Connectable Mode
connect to specific device — using ADV_DIRECT IND

Undirected Connectable Mode
connect to any device — using ADV_IND

Connection Establishment Procedures - Central

Auto Connection Establishment Procedures
automatically connect to a set of devices — uses white lists

General Connection Establishment Procedure
connect to any device — supports private connections

Selective Connection Establishment Procedure
connect to set of devices — separate configuration per device

Direct Connection Establishment Procedure

connect to “that” device — any private / unknown device
possible

WHAT CAN CONNECT TO WHAT?

No Yes if in list Yes if in list
No Yes if in list Yes if in list
No Yes if in list Yes if in list

No Yes Yes

Security Manager defines how to “pair” devices
authenticate and then encrypt a link

Bonding is the storing of
Security and Identity Information

Once bonded
a device can reconnect using the stored information
GATT will store service change information for device

Private Addresses

A type of Random Device Address
sub-categorized into either:
Non-Resolvable Private Address
Resolvable Private Address

Static Address
Random Non-Resolvable

Device Address Private Address

Private Address
Public Resolvable
Device Address Private Address

ADDRESS TYPES

TxAdd
RxAdd
Public

A
Device Address 24 bits 24 bits
Static random part of static address Inn
Device Address 46 bits
Non-Resolvable random part of static address EH-
Device Address 46 bits
.. I
Device Address 22 bits

Resolvable Addresses

TxAdd

RxAdd
Resolvable

oy | e 101
Device Address 22 hits

hash = func (IRK, prand)

GAP CHARACTERISTICS

«Device Name»

«Appearance»

«Peripheral Privacy Flag»

«Reconnection Address»

«Peripheral Preferred
Connection Parameters»

the local name of the device

enumeration of what the device “looks like”

does this peripheral support privacy - is it enabled

address to use when reconnecting to a private device

what this peripheral would prefer the central connect with

Applications

Physical Layer

[Applications] Apps
Generic Access Profile
Generic Attribute Profile
. | Host
Attribute Protocol Security Manager
Logical Link Control and Adaptation Protocol
Host Controller Interface
Link Layer Direct Test Mode
| ke Contoler

Applications

Client Server Architecture
Service — exposes behavior that have characteristics
Profile— define how to use services on a peer

Service

Profile
Requests
! > Char. Service

Profile

Responses

Service

Profile

Two Approaches

Use Standard Services
defined by Bluetooth SIG
includes lots of useful things
battery
heart rate
temperature

can even request new ones
“New Work Proposal”

Great interoperability
vast “app” ecosystem

Define Your Own Service
using 128-bit UUIDs
you can do what you want
motor controls
custom sensors
calibration

can even buy 16-bit UUIDs
allow donation later

Closed ecosystems
few supporting apps

Faster Data Rates
2.5x to 4.5x faster

Low Power Optimizations
privacy in Controller

Longer Range
500m to 1km ranges

Audio

hearing aids

106

SUMMARY

New Technology
Blank sheet of paper
Optimized for ultra low powe

Asymmetric Architecture
Broadcaster / Observer
Peripheral / Central
Client / Server
Service / Use Case

SUMMARY

Leading Edge Technology
AES-128 encryption, w/ CBC-MAC
Simple Pairing
Object Oriented Model
XML based Testing

Robust

24-bit CRCs and 32-bit MICs
Full AFH at Connection Setup
Prepare / Execute Writes

SUMMARY

It does everything you need
30 — 50 meter range
highly robust
consultant free
very fast connections
signed transactions
simple star topology
very low cost

SUMMARY

Bluetooth low energy
the only open wireless standard
connecting everything else

sports sensors, fitness equipment, automotive keyless go, car climate
control, cellular phones, games consoles, medical devices, proximity, smart
energy, assisted living, phone accessories, wellness, animal tagging,
intelligent transport, machine to machine, shoes, watches, bracelets, rings,
toys, remote controls, location based services, broadcast services, find my car
keys, children tracking, smart appliances, automatic maintenance of
household goods, and your next great idea...

THANK YOU!

